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Abstract

It is not at all surprising that a regular polygon has a larger area for a
given perimiter than any other polygon with the same number of sides, but
can you prove it? It is remarkably hard. This question was proposed for a
GCSE maths project but I can’t find any proof that does not involve some
concepts from calculus and linear algebra, albeit disguised. Here’s my best
effort.

1 Triangles

The case of a triangle is easy. Given any triangle ABC, fix A and B and try
moving C parallel to the line AB. This changes the perimeter but not the area
of the triangle. It is not hard to see that the perimiter is minimised when the
triangle is isosceles. We can also move A parallel to the line BC, or B parallel
to the line AC, so to minimise the perimeter for a given area the triangle must
be isosceles in three different ways, that is, equilateral.

We should pause to prove that minimising the perimeter for a given area is the
same as maximising the area for a given perimeter. Suppose that a polygon X
has maximal area A for a given perimeter p and that a second polygon Y with
the same number of sides has the same area but a smaller perimeter q. Con-
struct a third polygon Z by enlarging Y by a factor of p/q. Its perimeter is now

equal to p but its area is A
(

p
q

)2

which is larger than A. This contradicts our
assumption that X has maximal area. Therefore our two assumptions cannot
simultaneously hold. Therefore if A is the maximal area for perimeter p then
p must be the minimal perimeter for area A. Exchange X and Y to prove the
converse.

2 Quadralaterals

Now consider a quadralateral ABCD. We can cut it into two triangles ABC
and CDA. By moving B parallel to AC we can show that ABC must be
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isosceles, that is that AB = BC. Similarly we can show that BC = CD and
CD = DA so all the sides must be the same length. This tells us that the
quadralateral must be a rhombus, but we still haven’t proved that it must be a
square.

Fix AB to be horizontal and choose the angle ABC. This fixes C somewhere on
the circle with centre B and radius BA. That in turn fixes D because CD must
be parallel and equal to BA. The area of our rhombus is the length of the base
BA times the perpendicular height of C above BA. Now keep the base fixed
and vary the angle ABC so as to maximise the height. Clearly the maximum
occurs when ABC is a right-angle, that is when ABCD is a square.

3 Cannot generalise

The first half of the argument for quadralaterals generalises to polygons with
any number of sides. Consider a polygon ABC...Z. Cut off a triangle ABC
and move B parallel to AC. The perimeter is minimised for a given area when
AB = BC. Since we could have chosen any corner to move instead of B, all
sides must be the same length.

The second half of the argument for quadralaterals is specific to quadralaterals
and does not generalise. We’ve proved that the optimal polygon has all its
sides equal, but we need to prove that it has all its angles equal too. That’s the
hard part.

4 Exchange rates

Again consider a polygon ABC...Z and cut off a triangle ABC. Let us sup-
pose we have already arranged for all the sides to be equal so that AB = BC.
Now consider moving B perpendicular (not parallel) to AC by an infinitesimal
amount dh. This changes both the area and the perimeter, so at first sight we’re
on to a loser.

However, the change of area dA and the change of perimeter dp are both pro-
portional to dh (to first order) and so we can work out the ratio dA/dp, and call
it k. Given that we have assumed that ABC is isosceles, k can only depend on
one thing: the angle ABC. Even without computing it explicitly, it is not hard
to see that k is an increasing function of the angle ABC, equal to infinity when
ABC is 180 degrees (that is, when ABC is a straight line) and decreasing to a
limit of 1

2AC as ABC decreases to zero (that is, when ABC is very acute).

This ratio k is like an exchange rate of perimeter for area.1 We computed it for
the corner B but we could have chosen any corner. Other corners might have

1Technically, it is a Lagrange multiplier.
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different exchange rates. If so, there is an economic short-circuit, and we can
exploit it in order to increase the area without changing the perimeter, or to
decrease the perimeter without changing the area. That makes the basis of a
proof.

5 The proof

Suppose a polygon ABC...Z maximises the area for a given perimeter relative
to other polygons with the same number of sides. Obviously it is convex. By
the argument in section 3, we know that all of its sides are the same length.
Let us suppose, hoping for a contradiction, that two of its angles are different.
For the sake of the argument, let’s say they are the angles at B and E, but they
could be at any two corners, even corners that are next to each other. Without
loss of generality, let’s suppose that angle ABC is smaller (more acute) than
angle DEF .

Compute the exchange rate kB for moving B an infinitesimal distance perpen-
dicular to AC, and also the exchange rate kE for moving E perpendicular to
DF . Because ABC is smaller than DEF , we know kB is smaller than kE .

Choose an infinitesimal change of perimeter dp. Move B perpendicular to AC
towards the centre of the polygon just enough to decrease the perimeter by dp.
This also decreases the area by kBdp. Now move E perpendicular to DF away
from the centre of the polygon just enough to increase the perimeter by dp. This
increases the area by kEdp.

The total change of perimeter is zero, but the total change of area is (kE−kB)dp
which is greater than zero. This contradicts our assumption that the polygon
was optimal. Therefore, if the polygon is optimal then it must be impossible
to find two angles that are different. Since we already know that all the sides
must be equal, this proves that the polygon is regular.

6 Corollary

By considering the limit as the number of sides tends to infinity, we have
proved that a circle has a larger area for a given perimeter than any other closed
curve.
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