
CHAPTER 1

Introduction

1

CHAPTER 2

Background

This chapter reviews the many sources that I have relied upon in designing MIN,
and also some of the apparently relevant ideas that I have rejected. There are at
least three easily distinguishable communities within computer science that study
the semantics of programs with a view to optimising or otherwise transforming
them. Any of these could plausibly be the starting point for an understanding of
the semantics of multi-threaded programs. They are:

• the community which, back in the 1980s, worked out how to write almost
perfect C compilers. This community likes to think about the kind of
problem where a program is presented in a form similar to assembler,
such as a register transfer language or a single static assignment form,
and needs to be converted into a similar form, such as machine code for a
particular processor. Areas of current research include code compression
and the interaction of instruction re-ordering and register allocation.

• the functional programming community which, in the 1990s, worked out
how to compile functional programs almost as well as C programs, even
though they are an abstraction far from physical machines, and do not
offer programmers much opportunity to direct the implementation and
optimisation of their code. Areas of current research include weird and
wonderful analyses that deduce that parts of a program are only used in
certain ways, thus allowing a specialised and more efficient implementa-
tion.

• the process calculus community, which has the unique advantage of truly
understanding concurrency, but which has never really grappled with
real-world problems, and which has never produced a programming lan-
guage that is more than a toy. Current areas of research include the in-
vention of new calculi and the understanding of the semantic effect of
decisions in their design.

I have almost exclusively drawn on the work of the third of these communities.
Though the other two appear to provide promising starting points, I believe that
there are significant obstacles to understanding the problems of multi-threaded
programming as perturbations of ordinary single-threaded imperative or func-
tional programming, and that knuckling down and working out how to do real
programming with process calculi is a line of attack that is much more likely to
succeed.

Having said that, the task of programming with process calculi is a great deal eas-
ier thanks to the possibility of imitating the historical development of functional
languages. We won’t have to do nearly as much trial and error. Many of the fa-
mous failures of functional programming, such as the idea of compiling programs
using the S and K combinators, have close analogies in process calculi. While the
bulk and the detail of my work draws on process calculi, the large-scale structure
of it comes from functional programming.

2

2.1. INTERACTION NETS 3

There is a fourth source which I did not include in the above list because there is
currently very little work on its applications to programming, and that is the lit-
erature on Interaction Nets. Interaction Nets have contributed enormously to my
work, in notation, intuition and nomenclature. This beautiful model of compu-
tation arose from the study of proofs and logic, but its attractions to me relative
to other models of similar power and simplicity are that it is linear and that it is
graphical. It also enjoys some good mathematical properties. Finally, but beyond
the scope of this thesis, staring back from the page are user-defined rewrite rules
that would map beautifully onto machine code. The IN in MIN stands for Interac-
tion Nets (the M stands for Multi-threaded).

MIN can therefore be summarised as a marriage of Interaction Nets with the math-
ematics of process calculi, guided by experience from functional programming.

The structure of this chapter is as follows. In section 2.1 I review some of the liter-
ature on Interaction Nets. In section 2.2 I give an approximately historical account
of the techniques from process calculi that I have used. My type system, which is
supposed be competent but uninspiring, does not deserve a separate section of its
own; all the required techniques are contained in sections 6.2 to 6.7 of [33], for ex-
ample. Functional programming is a sufficiently mature field that I can point you
at the 1987 textbook that I used [27] and supplement it with a brief explanation, in
section 2.5, of how I have applied the principal ideas.

2.1. Interaction Nets

Yves Lafont introduced Interaction Nets in 1990 [16], but if you read one paper it
should be his 1997 paper on Interaction Combinators [17]. For the last few years
the Interaction Net torch has been carried mainly by Ian Mackie and Maribel Fer-
nández. Their project like mine is to use Interaction Nets as an intermediate lan-
guage in a compiler, but whereas I am interested in multi-threaded languages they
are interested primarily in functional languages, and in particular in sharing. Their
work and mine therefore have both a healthy overlap and an interesting difference
of perspective.

2.1.1. Interaction Nets. An interaction net version of the AND gate example
that I used to illustrate MIN in chapter 1 is shown in figure 2.1.1. The comparison
with the MIN version is instructive.

One obvious difference is a superficial difference of notation. The figure uses a
notation in which nodes are drawn as circles and the principal port of each node is
indicated with an arrow. This is the notation used in [10], for example. A triangle-
based notation similar to that which I use for MIN is also sometimes used for
Interaction Nets.

2.1.1.1. No linking. Two important differences between the MIN and interac-
tion net version of figure 2.1.1 are actually aspects of a single fundamental differ-
ence of approach. First, the interaction net treats all four node symbols on a par,
whereas the MIN program partitions them into two constructor symbols and two
destructor symbols. Second, the interaction net doesn’t actually have a net (which
in MIN would be called the main graph); it only has an alphabet (which in MIN
would be called the node declarations) and some rewrite rules.

What is going on is as follows. Diagram 2.1.1 does not define a self-contained
communicating program like the MIN program does. Instead, it defines an inter-
action net system, a language which can be used for writing programs. The phrase
‘Interaction Nets’ refers to the collection of all possible such systems, and a net

2.1. INTERACTION NETS 4

And

true

And

false

Kf

false

false

Kf

true

false

Kf

Alphabet: And true falseKf

FIGURE 2.1.1. An interaction net implementation of an AND
gate. Compare the MIN version in chapter 1.

is a program which makes sense only in the context of a particular system. For
example, a single ‘and’ node would be a net of the system in figure 2.1.1 which
represents a single one-shot AND gate.

This might look like playing with words but it is far from trivial. It is true that
the node declarations and rewrite rules could be included in every interaction
net to make them look like MIN programs, and that the node declarations and
rewrite rules of many MIN programs can be combined to look like an interaction
net system. However, these tricks only take care of the operational semantics. MIN
also has a linking operation, which allows programs with different node symbols
and rewrite rules to be joined together. Interaction nets do not, so nets can only be
composed to form larger nets if they belong to the same system.

The name-space of node symbols for an interaction net is therefore finite and
global, a property only of the interaction net system and not of any particular
net. Any distinction made between constructors and destructors would be of no
consequence. This explains why Interaction Nets make no such distinction. In
contrast, MIN’s linking operation treats constructors and destructors differently,
and programmers have good reason to care which is which.

The impact of linking on the theory is enormous. In the absence of linking, the set
of contexts which can be used to try to observe the differences between programs
is considerably smaller, and this means that the equivalence relation on programs

2.1. INTERACTION NETS 5

can be larger. For example, in the system in figure 2.1.1 it is not possible to distin-
guish ‘true’ from ‘false’, because there is no ‘if’ destructor symbol. MIN’s linking
operation provides a way of introducing one.

The definition of linking and recognition of its importance are among my novel
contributions.

2.1.2. Observational equivalence. My theory of observational equivalence
for MIN programs, which I develop in chapter 3, is based on the concept of sim-
ulation, and imitates the theory developed for CCS, the π-calculus, and similar
process calculi, which I review in section 2.2. Fernández and Mackie also have a
simulation-based theory of observational equivalence, for Interaction Nets, which
imitates theory developed for the lambda calculus and for functional program-
ming languages [10]. Comparing their project with mine, one would expect this to
be the main area of overlap, and it is.

Encouragingly, the end result is exceedingly similar. I believe that if their defini-
tion of the observational equivalence relation were applied to a MIN program that
is an interaction net, it would produce exactly the same relation as my definition.
However, there are plenty of differences in the detail.

Like mine, their definition involves partitioning the node symbols into construc-
tors and destructors, which is fascinating given that there is no obvious basis for
such a distinction in Interaction Nets. I think this situation has arisen because they
imitated theory developed for functional programming languages which do have
a concept of linking and hence a distinction between constructors and destructors.
The necessity of making a distinction is thus an evolutionary relic which they have
inherited without inheriting the evolutionary pressure which shaped it.

Whatever its origins, this feature of their definition is exceedingly odd. The parti-
tion chosen does not affect the operational semantics of nets in any way, and yet
it makes a large difference to the observational equivalence relation. At one ex-
treme it is possible to choose all node symbols to be constructors, in which case
the equivalence relation is extremely fine: it merely relates all non-interacting pro-
grams and includes the reaction relation. At the other extreme it is possible to
choose all node symbols to be destructors, in which case the equivalence relation
is the universal one.

Their definition differs from mine in its labelled transition relation. My labelled
transition relation allows input transitions to occur at any time at any port, whereas
theirs is rather more efficient and gives criteria for eliminating most input transi-
tions. On the other hand, my labelled transitions only ever involve a single port,
whereas they have some that join two ports with a wire, and even some which join
a tuple of ports to a node. I believe that the minimal labelled transition relation
will lie in the intersection of theirs and mine. However, I think mine is the minimal
labelled transition system that does not require a special definition of simulation
(one that differs from that used for CCS).

The observation and proof that labels involving more than one port are unneces-
sary is related to the absence of a ‘match’ primitive in Interaction Nets and in MIN,
and is one of my novel contributions.

2.1.3. Interaction combinators. A particularly interesting interaction net sys-
tem is that of Lafont’s interaction combinators [17]. The system has just three node
symbols, but is able to encode any other interaction net system. The definition
of ‘encode’ used to make this statement is impressively strict. The encoding al-
gorithm is compositional: it replaces each node of a net belonging to the other

2.1. INTERACTION NETS 6

system with a net made of interaction combinators, and wires those nets together
exactly as the nodes were wired together. If the original net has no redexes, then
neither does its encoding. Otherwise, performing any reaction in the original net
and then encoding it yields the same result as encoding the original net and then
performing a finite number of reactions.

I am not aware of any satisfactory observational equivalence relation for nets of in-
teraction combinators. Interaction combinators are completely deterministic, like
all interaction net systems, and so the reaction relation generates a sound equiva-
lence relation. There are some well known additional equivalences that intuitively
should also hold for interaction combinators [10]. Lafont defines a ‘path equiva-
lence’ relation, which can be axiomatised by a subset of these. The smallest equiva-
lence relation containing all of them is larger. It is usable for simple optimisations,
but it is not observational, and is rather uninformative.

My theory cannot be applied to interaction combinators because there is no good
way of partitioning the three node symbols into constructors and destructors. [10]
applies its theory, which is similar to mine, with all three symbols as destructors,
but unfortunately the resulting equivalence relation relates any two nets with the
same number of free ports.1 Lafont points out that it is possible to double the num-
ber of interaction combinators by making a constructor and a destructor version
of each, and that his encoding has the property that all redexes that arise involve
one constructor and one destructor. This change allows my theory to be applied.
However, applying my theory to that system yields an equivalence relation that
is too fine: it does not even contain Lafont’s path equivalence relation. This is
because my theory accounts for the effect of linking, which is inappropriate.

The problem remains open. Programs written using Lafont’s interaction combina-
tors are not MIN programs.

2.1.4. Multiple principal ports. All node symbols in Interaction Nets have
exactly one principal port. Since all redexes consist of two nodes joined only by
their principal ports, it is impossible for two redexes to overlap, and so all interac-
tion net systems have a strong ‘one-step diamond’ confluence property. Thus they
are examples of languages that are concurrent but deterministic.

The theory of a deterministic language is exceptionally simple, and that is one of
the attractive features of Interaction Nets, but for real programming determinism
is not always a good thing. As I explained in chapter 1, MIN allows destructors to
have more than one principal port, in which case they are called arbiters. A similar
idea appears in [8], but without the useful restriction to destructors.

That paper also shows that all arbiters can be encoded using a single arbiter called
‘amb’, which reacts to form one of two wirings depending on at which of its two
principal ports it reacts. It seems to be quite hard to implement general arbiters
well, so an encoding of this sort in terms of a particular arbiter may well be a
pragmatic approach to implementing MIN. The particular arbiter I favour is not
‘amb’ but ‘merge’ (similar to ‘angelic merge’ in [8]) of which more in chapter 6.

The ‘multiple principal ports’ approach is not the only way of introducing non-
determinism into Interaction Nets that is found in the literature. A particularly
dumb suggestion is to allow multiple rewrite rules with the same redex. This in-
troduces all the down-sides of non-determinism but does not achieve arbitration.
A better idea is to allow wires to fork, but this unnecessarily sacrifices linearity and

1This was a bit of a shock to Ian Mackie when I alerted him to it. Having discussed it we still think
it is true. In particular, the paper has no negative results, and its final example is especially worrying.

2.1. INTERACTION NETS 7

a certain amount of information hiding. A fourth approach is to use hyper-edges
that have more than two ‘ends’. I have not investigated this approach in detail, but
in other graphical formalisms hyper-edges can simply be viewed as nodes, with
their several ports joined by linear wires to the things explicitly called nodes.

One of my novel contributions is the observation that my simulation-based ob-
servational theory generalises flawlessly to the case of destructors with multiple
principal ports. This is really quite an unexpected result, and a very pleasant one.

2.1.5. Types. Type technology is remarkably portable between programming
languages and consequently there is a healthy array of type systems for Interaction
Nets, beginning with one in Lafont’s original paper. That Interaction Nets arose
from a fragment of linear logic also provides excellent intuitive support for the
design of a type system.

Most type systems for Interaction Nets, including that in Lafont’s original paper,
have in common that every port is annotated both with a type and with a polarity.
The polarity can be ‘input’ or ‘output’, and two ports can only be joined if one is
an input and the other is an output. The types of the two ports impose an extra
restriction on whether they can be joined together. In the simplest case there is a
set of possible types, and each can be joined only to itself. A more sophisticated
idea is to define a subtype relation on the types, and to allow an output port of type
t to be joined to an input of type u only if t is a subtype of u. I do this in chapter 4.
Either option is compatible with any of the usual array of logical structures for the
set of types.

Type systems of the form just described serve to ensure that only certain cuts can
arise, and perhaps to ensure that rewrite rules exist for all of them. In addition,
Lafont introduced what he called semi-simple nets, which obey a type system de-
signed to prevent vicious circles. A vicious circle is a form of deadlock in which
the principal path from a node leads back to that node. While this property is
certainly desirable, the price is that to check the types of a program it must be
constructed in a particular order; the locality that is one of Interaction Nets’ most
appealing features is lost. Researchers accustomed to term rewriting systems feel
comfortable writing judgements about entire terms, and ideas imported from the
lambda calculus often end up in this form [7]. I didn’t do this.

My own type system must cope with linking. I was keen to ensure that programs
can be linked even though they were written independently. This necessitated a
denotational flavour: the type of a program makes a statement about its message-
passing behaviour that can be understood independently of any identifiers de-
fined within the program. I copied the idea from part of the programming lan-
guage OCaml, but I think it is new to Interaction Nets.

2.1.6. Implementation. Jorge Sousa Pinto has done some work on implement-
ing interaction nets [29] which has led to a useful tool for calculating the normal
forms of programs. This in turn has been used for empirical studies of different
encodings of the lambda calculus, for example [21, section 9].

As an exercise in programming, this work is not very ambitious. The paper does
not say what programming language was used, but it looks like it was something
like ML. It does not tell us much about the mapping of interaction nets onto real
hardware. Instead, the principal interest of this paper is the data structure it uses
to model an interaction net. This data structure is designed to minimise the cost of
modifications at the cuts, since that is where rewriting happens.

2.2. PROCESS CALCULI 8

To this end, it breaks a net down into what Lafont would call principal nets: singly-
connected graphs in which every internal wire joins a principal port to an auxiliary
port. The resulting forest is supplemented by information about the remaining
wires, with a special case for the cuts. Mackie traces this idea back to Lafont’s tex-
tual notation for writing interaction net rewrite rules, and has used it in his own
textual notations for interaction nets [10], but Pinto can take credit for recognising
its importance for an implementation. I followed the basic idea in the textual no-
tation I invented for the proofs in chapter 3. Beyond this thesis, I plan to follow it
again in my own implementation work. It is clearly the right approach.

The paper continues with a claim that the algorithm can be easily extended to
exploit multiple processors. I do not believe this claim. It appears to be based
on a memory model that has not been typical of any high-performance computer
since the 1980s, in which grabbing a lock is barely more expensive than accessing
memory. The algorithm grabs locks at least once per rewrite. The reality is that
grabbing a lock forces the processor to flush much of its cache, which can be very
expensive. A realistic implementation would not benefit from an extra processor
unless it could perform at least tens of rewrites for each time it grabs a lock. Thus,
Pinto’s paper has not addressed the principal problem. Neither have I.

2.1.7. Encodings. A crucial ingredient in any project to use interaction nets
as an intermediate language in a compiler is an array of encodings of other lan-
guages into interaction nets. This being a mainly theoretical problem, a consider-
able amount of work has been spent on it.

The lambda calculus and its relatives are especially favoured as source languages.
In addition, it happens that Lamping’s algorithm for optimal reduction of lambda
calculus terms is an interaction net system [1], as are various of its later improve-
ments. Mackie presents one of the best encodings of a lambda calculus variant
(linear logic) in [21], which also includes a brief empirical review of the competi-
tion. One of the reasons that the lambda calculus is so favoured is that interaction
nets are an excellent tool for studying sharing. Being linear themselves, there is no
way that they can hide a copy or discard operation; all such operations must be
encoded explicitly.

My interest in interaction nets, and in process calculi in general, is different: mes-
sage passing is an excellent abstraction of IO, and of interaction between programs
that are executing separately. On this level I feel it is a pity that interaction nets
have mainly been applied to functional languages, whose model of IO and concur-
rency is invariably painful, and which do not provide the test cases for interaction
nets to shine in a way that they could. I have tried to bring out this neglected side
in the practical half of my thesis, especially chapter 6.

2.2. Process Calculi

From my perspective, the canonical process calculus is CCS [23]. Although other
early process calculi such as Petri Nets [ref] and CSP [ref] have their descendants,
almost all of the calculi I have encountered trace their lineage back to CCS, mostly
via some variant of the π-calculus.

If I may deliberately over-simplify, CCS was thrust upon a world that thought of
the lambda calculus as the core calculus that underlies all computation. Numer-
ous other models existed, such as Turing machines, but they all fell in the same
camp, which I think of as the lambda calculus camp. Programs were applied to in-
puts, ran for a while, and then returned results. When applied to the same inputs

2.2. PROCESS CALCULI 9

again, they produced the same results (ideally). Of course, there was also systems
software, but that was written in low-level languages like assembler and C/Posix
and was beyond all hope of comprehension.

That is, until CCS. Suddenly, here was a calculus that was designed to model con-
current, non-deterministic systems such as networks, user interfaces, web browsers
and schedulers. What is more, it came with maths. In the same way that tra-
ditional (lambda calculus) programs could be optimised as long as the answers
didn’t change for any inputs, CCS provided criteria for validating optimisations
of concurrent programs. That’s the vision I’m chasing, twenty years later.

2.2.1. CCS. In this section, everything comes from [23] unless otherwise stated.

The philosophical message of CCS is that the interesting events are the ones that
require the cooperation of two parties (processes).2 Sometimes you hear people re-
fer to this cooperation as message passing, and this has contributed words like
‘input’ and ‘output’ to the jargon. This is unfortunate, as communication in CCS
is not message passing: it is synchronisation. The difference is that when two pro-
cesses try to synchronise, both have to wait until the event happens, whereas for
message passing only the receiver has to wait. The first true message-passing cal-
culus in the CCS family was the asynchronous π-calculus (see section 2.3.3), some
seven years later [check].

2.2.1.1. Syntax. I expect most of my readers are familiar with CCS and so I
will not dwell on its motivation and interpretation. However, I do depend on it
quite heavily, and so I will give a complete definition. The syntax is that accepted
by the following grammar, in which 〈name〉 is a countably infinite set of names:

DEFINITION 2.2.1. (CCS)

〈action〉 ::= 〈name〉 | 〈name〉 | τ
〈sum〉 ::= 0 | 〈sum〉+ 〈sum〉 | 〈action〉 . 〈process〉

〈process〉 ::= 〈sum〉 | 〈process〉|〈process〉 | ν 〈name〉 . 〈process〉

In the process νx.P the name x is bound in P . All other names are free. There are
no side-conditions.

2.2.1.2. Operational semantics. The simplest way to define the semantics of CCS
is to imagine processes swimming around in some sort of soup, and synchronis-
ing only when a sender happens by chance to encounter a matching receiver. This
idea first appeared in [3]. Terms of the CCS grammar represent configurations of
the soup, and reachability of configurations by swimming is represented by an
equivalence relation called the structural congruence.

DEFINITION 2.2.2. (Structural congruence)

Let the structural congruence, written ≡, be the smallest congruence satisfying the
following axioms:

0 | P ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

0 + S ≡ S S + T ≡ T + S S + (T + U) ≡ (S + T) + U

2Curiously, none of the calculi that use CCS-like synchronisation seem to address the question
of more than two parties cooperating; it appears to be impossible to reduce three-way synchronisa-
tion cleanly to a series of two-way synchronisations without leaving some observable artifacts. This
problem goes away in the asynchronous case (see section 2.3.3).

2.2. PROCESS CALCULI 10

x /∈ fn(Q)
(νx.P) | Q ≡ νx.(P | Q) νx.νy.P ≡ νy.νx.P

The first line makes | a commutative monoid, and the second does the same for +.
Finally, the third line gives some trivial properties of fresh names.

Note that I have been a little lazy here in not distinguishing sums from processes;
although every sum is a process, its parse tree as a sum is not the same as its parse
tree as a process. Arguably there ought to be a rule that if S ≡ T (as sums) then
S ≡ T (as processes).

Synchronisation due to chance encounters can now be captured very simply.

DEFINITION 2.2.3. (Reaction relation)

Let the reaction relation, written −→ be defined by the following rules:

x.P + S | x.Q + T −→ P | Q τ.P + S −→ P

P −→ P ′

P | Q −→ P ′ | Q
P −→ P ′

νx.P −→ νx.P ′
P ≡−→≡ P ′

P −→ P ′

This is a very pretty intuitive picture of the way computation happens in CCS. Its
main drawback is that the derivation of a reaction may be exceedingly perverse,
and usually won’t respect the structure of a process. Indeed, a reaction can com-
pletely change the structure of a process, using the structural congruence. This
makes it rather difficult to prove things about all reactions. This failing is cor-
rected by a second definition (historically the first) of what is essentially the same
behaviour.

DEFINITION 2.2.4. (Labelled transition relation)

Let the labelled transition relation, with elements written P
α−→ P ′, P being a process

or sum, P ′ being a process and α an action, be the smallest satisfying the following
axioms:

α.P
α−→ P

PREFIX
S

α−→ P ′

S + T
α−→ P ′

SUM1
T

α−→ P ′

S + T
α−→ P ′

SUM2

P
α−→ P ′

P | Q α−→ P ′ | Q
PAR1

P
x−→ P ′ Q

x−→ Q′

P | Q τ−→ P ′ | Q′
COM1

Q
α−→ Q′

P | Q α−→ P | Q′
PAR2

P
x−→ P ′ Q

x−→ Q′

P | Q τ−→ P ′ | Q′
COM2

P
α−→ P ′ x /∈ fn(α)

νx.P
α−→ νx.P ′

NEW

Derivations of labelled transitions are completely guided by the structure of a pro-
cess. In particular, the labelled transitions of P | Q are completely determined by
the labelled transitions of P and Q, irrespective of their internal structure. The
price is that it is not at all obvious that | is a commutative monoid (for example).

The two definitions are related as follows:

THEOREM 2.2.5. (Relationship of reactions and labelled transitions)

−→ = τ−→≡

MIN too has a structural congruence, a reaction relation and a labelled transition
relation, related by a theorem just like this.

2.2. PROCESS CALCULI 11

2.2.1.3. Infinite behaviour. [Cut down this section to a single paragraph explaining
“not explained here”? It would mess up the introduction to the next section.]

So far, I have only presented the finite subset of CCS. To obtain a computationally
complete system, we need some sort of infinite behaviour. Conventionally, this is
done using recursion. My favourite approach is to add µ binders and substitutions
to the grammar. There is no need to present the details here.

2.2.2. Simulation. The content of this section is also mostly from [23].

The possibility of deriving all labelled transitions of P | Q from the labelled tran-
sitions of P and of Q, and similarly for all the other CCS operators, along with the
fact that these can be used to recover the reaction relation, strongly suggests that
the entire behaviour of a process is contained in the labelled transition relation.
This provides a way of defining when two processes are equivalent, namely, when
they have the same labelled transitions.

That the labelled transitions contain the entire behaviour of a process is quite a
weak statement. After all, the detailed syntax also contains the entire behaviour.
We can argue that a definition of equivalence will be sound (that is, if two pro-
cesses satisfy the definition then they are truly equivalent) but so far we have no
way of arguing that it is complete (any two processes that are truly equivalent sat-
isfy the definition). We will fix this (and define ‘truly equivalent’) in section 2.4.1.

In section 2.2.1.1, I gave several examples of processes that I said were equivalent
because after some small number of synchronisations they became identical. For
example, x.P | x.Q and x.(P | x.Q)+x.(x.P | Q)+τ.(P | Q) are related in this way,
as are νx.(x.P + y.Q) and y.νx.Q. However, we must be bolder than that. There
are plenty of examples of pairs of programs which take an arbitrarily large number
of synchronisations to become equal, and plenty more which are equivalent even
though they have no common future.

The technology required to handle the infinite cases is simulation. Again I will
cover this material thoroughly, despite expecting many of my readers to be famil-
iar with it, because I depend on it heavily.

2.2.2.1. Strong simulation.

DEFINITION 2.2.6. (Strong simulation)

Say a relation S on processes is a strong simulation iff S
α−→ ⊆ α−→ S; that is, iff it

satisfies the following:

• For all processes P and Q and actions α, if P S Q and Q
α−→ Q′ then there

exists a process P ′ such that P
α−→ P ′ and P ′ S Q′.

Say P strongly simulates Q iff there exists a strong simulation S such that P S Q.
Say P and Q are mutually strongly similar iff P simulates Q and Q simulates P .

Say a simulation S is a strong bisimulation iff it is symmetric. Say P and Q are
strongly bisimilar, and write P ∼ Q, iff there exists a strong bisimulation R such
that P S Q.

This definition is quite subtle. Nowhere does it mention that a simulation must
be transitive or reflexive. However, = is a simulation, and the composition of two
simulations is a simulation, so any simulation can be extended to be reflexive and
transitive. Also, = is a bisimulation, and the composition of two bisimulations
is a bisimulation, so bisimulations can be similarly extended. The definition also
does not require that the ‘simulates’ relation is a simulation, but in fact it is the

2.2. PROCESS CALCULI 12

largest simulation, and similarly bisimilarity is the largest bisimulation. Therefore,
mutual similarity and bisimilarity, in addition to being symmetric by definition,
are reflexive and transitive; that is, they are equivalence relations.

One of the most important strong bisimulations is the structural congruence. Prov-
ing that the structural congruence is a strong bisimulation is the hard part of prov-
ing theorem 2.2.5.

I have defined two equivalence relations. Which is correct? Both turn out to be
congruences for CCS. Mutual similarity contains bisimilarity, because any bisim-
ulation is both a simulation and the inverse of a simulation. The inclusion is strict
because a.b.0+a.0 mutually simulates a.b.0 but is not bisimilar to it. The difference
between these two processes is that the former can get stuck after synchronising
on a, whereas the latter will always go on to try to synchronise on b.

Each equivalence relation is appropriate in some applications. In applications
where all possible paths are explored, such as an abstract interpretation, mutual
similarity may be more appropriate. In applications where one possible path is
chosen, such as a program, bisimilarity may be more appropriate. Still other equiv-
alences may be appropriate in other situations. Van Glabeek has written an excel-
lent review of 12 of the more commonly encountered strong equivalences [12].

2.2.2.2. Weak simulation. Strong bisimilarity only relates programs that per-
form exactly the same number of silent transitions. For example, P is not (in gen-
eral) strongly bisimilar to τ.P , even though the only thing the latter can do is to
become the former. It many applications, including mine, this is no good, as re-
ducing the number of computation steps is one of the goals. In such situations,
weak similarity may be more appropriate.

DEFINITION 2.2.7. (Weak transition relation)

Let τ=⇒ mean τ−→
∗

and let α=⇒ mean =⇒ α−→=⇒ if α 6= τ .

Define weak simulation, weak simulates, weak mutual similarity (written h), weak bisim-
ulation and weak bisimilarity (written ≈) just like their strong counterparts, but us-
ing α=⇒ everywhere in place of α−→.

A practical failing of this definition is that α=⇒ is not an image-finite relation: for
some P and α there may be infinitely many processes P ′ such that P

α=⇒ P ′. This
is easily fixed, by using the following alternative definition of weak simulation:

DEFINITION 2.2.8. (Weak simulation)

Say a relation S on processes is a weak simulation iff S
τ−→ ⊆ τ=⇒ S and S

α−→ ⊆
α=⇒ S.

Weak bisimilarity is a much larger relation than strong bisimilarity, and opens up
new possibilities. For example, the weak bisimilarity µV.(S +τ.(T +τ.V)) ≈ S +T
can be used to reduce all sums to the form α.P +τ.Q. This ‘busy wait’ construction
has found numerous applications [11, 25].

2.2.2.3. ‘Up to’ techniques. The material in this section comes from a variety of
sources, including [23], but is most conveniently collected in [33, section 2.3].

Constructing simulations can be a chore. To prove two processes equivalent can
require an infinite relation if either process has infinite behaviour (which is the
most interesting case), but proving properties of infinite sets is rarely easy. To
reduce the work, it becomes essential to develop techniques that capture recurrent
parts of these proofs.

2.2. PROCESS CALCULI 13

DEFINITION 2.2.9. (Strong simulation precursor)

Given a relation S define Ŝ to be the smallest reflexive, transitive relation contain-
ing S and ∼ (and hence ≡) and satisfying the following rules:

P Ŝ Q

α.P + T Ŝ α.Q + T

P1 Ŝ Q1 P2 Ŝ Q2

P1 | P2 Ŝ Q1 | Q2

P Ŝ Q

νx.P Ŝ νx.Q

P Ŝ Q

Pσ Ŝ Qσ

Say S is a strong simulation precursor iff S
α−→ ⊆ α−→ Ŝ.

THEOREM 2.2.10. (Strong simulation up to various things)

If S is a strong simulation precursor, then Ŝ is a strong simulation.

Note that any simulation is a simulation precursor, so it is certainly no harder to
find a simulation precursor than to find a simulation. In other words, there’s never
a reason not to use the technique. Also, any simulation found without this tech-
nique can automatically be enlarged; this is a good way of showing that mutual
similarity and bisimilarity are congruences, for example.

A good illustration of the power of the technique is to attempt to prove the strong
bisimilarity of P = µV.x.V and Q = µW.(x.P + x.(W | W)), both of which just
perform xs for ever. The behaviour of P is very simple: P

x−→ P . However, a

typical reduction sequence of Q is Q
x−→

7
Q | (((P | Q) | (Q | Q)) | P). To construct

a raw bisimulation, we would have to find a way to enumerate all such processes
reachable from Q, and to relate each of them to and from P . Then we’d have to
prove that the relation really is a bisimulation. In contrast, it is sufficient to observe
that the symmetric closure of {(P,Q), (Q, Q | Q)} is a simulation precursor.

A similar technique, but with ≈ in place of ∼ and α=⇒ in place of α−→, can be used
for constructing weak simulations. However, it is nice to keep the image-finite α−→
in the premise of the definition. We must sacrifice some power in order to do this.
The most painful loss is transitivity, but we also partly lose the ability to work up
to ≈.

DEFINITION 2.2.11. (Weak simulation precursor)

Given a relation S on processes, define Ŝ to be the smallest relation containing S
and ≈ and satisfying the following rules:

P1 Ŝ Q1 . . . Pn Ŝ Qn

α1.P1 + . . . + αn.Pn Ŝ α1.Q1 + . . . + αn.Qn

P1 Ŝ Q1 P2 Ŝ Q2

P1 | P2 Ŝ Q1 | Q2

P Ŝ Q

νx.P Ŝ νx.Q

P Ŝ Q

Pσ Ŝ Qσ

Say S is a weak simulation precursor iff S
τ−→ ⊆ τ=⇒≈ Ŝ ∼ and S

α−→ ⊆ α=⇒≈ Ŝ ≈.

THEOREM 2.2.12. (Weak simulation precursor)

If S is a weak simulation precursor then Ŝ is a weak simulation.

This is enough to show that weak mutual similarity and weak bisimilarity are con-
gruences,3 which in turn is more than enough to obviate the following, otherwise

3The version of CCS given in [23] makes no distinction between sums and processes, so that
contexts of the form []+P are syntactically correct (my version permits only α.[]+S). Weak bisimilarity
is then not a congruence, because x.0 ≈ τ.x.0 but x.0 + y.0 6≈ τ.x.0 + y.0 (only the right-hand process
can internally commit not to synchronise on y). The fix I have adopted is widely known and used.

2.3. MOBILITY 14

tempting addition to definition 2.2.11:

P ∼ Ŝ ∼ Q

P Ŝ Q

These are the only ‘up to’ techniques that I need in this thesis, but there are many
more.

2.2.2.4. Coupled similarity. Weak bisimilarity is not big enough for my applica-
tion, on account of one example: in general, τ.P+τ.(τ.Q+τ.R) 6≈ τ.(τ.P+τ.Q)+τ.R
although these are intuitively both just ways of choosing at random between P , Q
and R. This problem was first fixed by Parrow and Sjödin [26], but a later work by
Nestmann and Pierce [25] gives a more general solution.

The trick is to weaken the requirement on bisimulations that they be symmetric.

DEFINITION 2.2.13. (Coupled simulation)

Say a weak simulation S is coupled iff S ⊆ τ=⇒ S−1.

Say P coupled simulates Q iff there exists a coupled simulation S such that P S Q.
Say P and Q are mutually coupled similar, and write P hC Q, iff P coupled simu-
lates Q and Q coupled simulates P .

Like weak bisimilarity and mutual weak similarity, mutual coupled similarity is
a congruence. However, unlike the ‘weak simulates’ relation, the ‘coupled simu-
lates’ relation is not a precongruence. This is because τ=⇒ is not closed with respect
to guarded contexts.

Arguably I should be looking for a still larger relation than mutual coupled sim-
ilarity. I find it difficult to motivate the coupling condition intuitively. Certainly
something is necessary, because mutual weak similarity is too large, but surely
not something as strong as that? Having said that, mutual coupled similarity has
a pretty definition that is easy to work with, and I have not yet encountered any
examples that require anything larger.

2.3. Mobility

A failing of CCS is that the set of channels that two processes have in common, and
which are therefore useful for synchronising, can never increase. This remains true
despite the fact that either of the processes may break itself into lots of fragments;
the original resources (at most) must be spread ever more thinly. The π-calculus
was designed to fix this problem. The feature it adds, the ability to build new
channels joining existing processes, is called mobility.

The π-calculus was first presented by Milner, Parrow and Walker in 1989, but since
its publication in 2001 Sangiorgi and Walker’s book “The π-calculus” [33] is the
definitive resource. It really is a brilliant piece of work, which deserves to be pre-
ferred to the primary sources.

The fate of the π-calculus has been not so much widespread adoption as enormous
influence. Very few authors have found it suits their purpose as it stands, but
everybody (including me!) seems to want to invent a calculus just like it. It has
therefore gradually acquired a role as the central repository of all maths on the
subject of ‘that sort of calculus’.

Figure 2.3.1 shows an approximate genealogy of MIN. Don’t take it too seriously.
It is intended to help you navigate the next few sections, in which I present the
π-calculus and those of its many sub-calculi that have contributed ideas to the

2.3. MOBILITY 15

CCS

mobility

pi

Api

join

piI

piF

bound output

bound output

bound output
fusions

fusions

fusions

asynchrony

asynchrony asynchrony

 ?

 ? ?

MIN

?

linearity(These are very close)

FIGURE 2.3.1. A MIN-centric genealogy of process calculi. Ques-
tion marks indicate calculi or concepts which are sensible but for
which there is no recognised brand name in the literature.

design of MIN. I review most but not all of the concepts in the figure. Fusions
don’t get a whole section, because they are important mainly for calculi that are
not asynchronous, and MIN is. Linearity doesn’t get a section because it is not
background material; MIN is the first linear process calculus that I know of.

2.3.1. The π-calculus. The principal innovation in the π-calculus (relative to
CCS) is in the guards. As well as synchronising on a channel, a sender and receiver
negotiate an additional channel that can be used in subsequent communications.
The negotiation is of a very simple form: the sender chooses a channel using any
algorithm it pleases, and informs the receiver of its choice. The symmetry between
the sender and receiver in CCS is therefore broken in the π-calculus.

There are two other innovations. First, replication is used in place of recursion as
the mechanism for infinite behaviour. This simplifies the definition of the calculus,
but does not change the expressive power. We can ignore replication here. Second,
the π-calculus adds a match primitive, that allows a process to determine whether
two channels are the same without synchronising on them. This does change the
expressive power, in a way that is useful but not very well understood. I consid-
ered that grounds enough to omit it from MIN (it’s not my battle) and I’ll omit it
here too.

2.3. MOBILITY 16

2.3.1.1. Syntax. The new syntax for sending is xy.P , in which x is the channel
on which the process synchronises, y is the channel it has chosen, and P is the
continuation process that will be activated if the synchronisation succeeds. y can
be any channel; the idiom νy.xy.P ensures it is fresh, but that is not always what
is desired. The new syntax for receiving is x(z).Q, in which x is the channel on
which the process synchronises, and Q is the continuation process. The name z
is a formal argument, that will be replaced everywhere in Q (except under νz or
another input guard w(z)) by the sender’s channel if the synchronisation succeeds.
Therefore x(z).Q and x(v).Q[z 7→ v] mean the same thing if Q does not contain v;
this is alpha-conversion again.

In summary, the syntax of the finite subset of the π-calculus is that accepted by the
following grammar:

DEFINITION 2.3.1. (π-calculus)

〈prefix〉 ::= 〈name〉 〈name〉 | 〈name〉 (〈name〉) | τ
〈sum〉 ::= 0 | 〈sum〉+ 〈sum〉 | 〈prefix〉 . 〈process〉

〈process〉 ::= 〈sum〉 | 〈process〉|〈process〉 | ν 〈name〉 . 〈process〉

The name x is bound in P in the processes νx.P and y(x).P . All other names are
free. There are no side-conditions.

2.3.1.2. π-calculus semantics. The reaction semantics of the π-calculus is very
close to that of CCS. The structural congruence is completely unchanged, but we
have to account for the new prefixes in the definition of the reaction relation.

DEFINITION 2.3.2. (Reaction relation)

Let the reaction relation, written −→, follow the definition used for CCS but with
the first rule changed to the following:

xy.P + S | x(z).Q −→ P | Q[z 7→ y]

Though the reaction semantics is uncontroversial, the labelled transition semantics
has been the subject of much debate, and a certain amount of confusion. There are
several superficially plausible extrapolations from CCS. Should labels look like

prefixes, so that x(y).P
x(y)−−−→ P , or should they incorporate the substitution, so

that x(y).P xz−→ P [y 7→ z]? Plugging these two options into the standard defini-
tion of strong bisimilarity gives ground and early bisimilarity respectively. Another
slightly different approach gives late bisimilarity.

Not only are these three equivalences all different, none of them is a congruence
with respect to input prefix. The problem is that input prefixes can cause the same
channel to be substituted for several names. This makes new connections in the
program that the bisimulations have not taken into account. To resolve this, it is
necessary to ensure that the relations are closed under substitutions. The largest
substitution-closed relation contained in each of the three equivalences is finally a
congruence. However, these congruences do not all coincide, either.

It is also possible to put the substitution-closure requirement into the definition of
bisimulation, so that a different substitution can be chosen at every execution step.
This leads to open bisimulation, yet another different congruence. Open bisimula-
tion has arguably the prettiest definition, but it is not the largest congruence.

This monstrous mathematical miasma was most aggressively attacked by San-
giorgi. In [ref 1995?] he defines ground, late and early bisimulation uniformly

2.3. MOBILITY 17

in terms of a single labelled transition relation, the better to be able to compare
them. Open bisimulation appears for the first time in the same paper. Writing
later with Walker [33] early equivalence and congruence seem to be the favourite,
but the book still includes a substantial discussion of the alternatives. If you are
unfortunate enough to need to know the details, look there.

Note that this discussion has been about strong bisimilarity only. The other obser-
vational equivalences have the same problems all over again.

2.3.2. The πI-calculus. Another approach to the problem of defining bisim-
ulation for the π-calculus is also due to Sangiorgi [32]. He observed that a slight
redesign of the calculus removes essentially all of the complications, but barely
changes the expressive power. The result is the πI-calculus. It is presented in
section 5.7 of [33], where it is called the Pπ-calculus.

In my opinion, this is the right approach. When a design feature turns out to cause
significant complications, it should in future be avoided. The πI-calculus offers a
way of avoiding a particularly poor feature of the π-calculus. I therefore find it
surprising that despite being widely known it seems to have been ignored. I have
incorporated its central idea into MIN, and I urge any of my readers who find
themselves designing a channel-passing calculus to do the same.

2.3.2.1. Syntax. What is this central idea, then? It is that outputs as well as in-
puts should be binding. The πI-calculus syntax for sending on a channel is x(y).P .
As usual, x is the channel on which to synchronise, and P is the continuation pro-
cess, but the name y is a formal argument that will be replaced by a fresh channel
everywhere in P (except under νy or w(y) or w(y)) when the synchronisation suc-
ceeds. In other words, it is a perfect symmetric counterpart of the input prefix
x(y).P which, now that only fresh channels can be sent, can only receive fresh
channels.

In summary, the syntax of the finite subset of the πI-calculus is that accepted by
the following grammar:

DEFINITION 2.3.3. (πI-calculus)

〈action〉 ::= 〈name〉(〈name〉) | 〈name〉 (〈name〉) | τ
〈sum〉 ::= 0 | 〈sum〉+ 〈sum〉 | 〈action〉 . 〈process〉

〈process〉 ::= 〈sum〉 | 〈process〉|〈process〉 | ν 〈name〉 . 〈process〉

The name y is bound in x(y).P and x(y).P and νy.P . All other names are free.
There are no side-conditions.

2.3.2.2. Operational semantics. The structural congruence and reaction relation
are much the same as for the π-calculus. The crucial rule is

x(y).P + S | x(y).Q + T −→ νy.(P | Q)

Note that there is no substitution in this rule; it is all absorbed into alpha-conversion.
Note also that it is completely symmetric, just like CCS. In this way, the πI-calculus
is a more faithful extrapolation from CCS than the π-calculus. This theme contin-
ues in the definition of the labelled transition relation.

DEFINITION 2.3.4. (Labelled transition relation)

2.3. MOBILITY 18

Let the labelled transition relation, with elements written P
α−→ P ′, P being a sum

or process, P ′ being a process, and α being an action, be the smallest relation
satisfying the following rules:

α.P
α−→ P

PREFIX
S

α−→ P ′

S + T
α−→ P ′

SUM1
T

α−→ P ′

S + T
α−→ P ′

SUM2

P
α−→ P ′

P | Q α−→ P ′ | Q
PAR1

P
x(y)−−−→ P ′ Q

x(y)−−−→ Q′

P | Q τ−→ νy.(P ′ | Q′)
COM1

Q
α−→ Q′

P | Q α−→ P | Q′
PAR2

P
x(y)−−−→ P ′ Q

x(y)−−−→ Q′

P | Q τ−→ νy.(P ′ | Q′)
COM2

P
α−→ P ′ x /∈ n(α)

νx.P
α−→ νx.P ′

NEW

Note that, in the derivation of a synchronisation, it is the COM rules that actu-
ally choose the fresh name; this is represented by the appearance of νy in their
conclusions.

Strong and weak simulation can be defined uncontroversially just like CCS, and
all the various equivalences turn out to be congruences naturally, without messing
around with substitutions. There is no tension between the various definitions;
they are all simultaneously just like CCS. This is reflected in the fact that there is
only one plausible definition for each of the various observational equivalences.
The problem is solved.

Although bound output can be achieved in the ordinary π-calculus using the id-
iom νy.xy.P , the impossibility of free output in the πI-calculus makes the two
calculi quite different. Processes that are not equivalent in the π-calculus can be
equivalent in the πI-calculus, even if they make no use of free output, because
they will never be subjected to substitutions. In fact, the unique strong bisimi-
larity relation in the πI-calculus is strictly larger than all of the π-calculus strong
bisimilarity congruences.

2.3.3. Asynchronous π-calculus. The asynchronous π-calculus is the best known
sub-calculus of the π-calculus, and has many sub-calculi of its own. It was in-
vented by Honda. His original paper [13] contains a conjecture that turned out
to be incorrect, so I recommend finding a later source, such as [25] or sections 5.1
to 5.5 of [33].

Like the πI-calculus, the asynchronous π-calculus can be seen as a syntactic re-
striction of the π-calculus, and like the πI-calculus, this viewpoint does not do it
justice at all. It is motivated by the many applications in which the primitive com-
munication medium does not support synchronisation, as found in CCS and the
π-calculus, but instead provides a reliable way of sending messages.

Message-passing media are the rule, not the exception. Unix pipes and signals,
and the various internet protocols, are all based on message passing. A subroutine
call is a sequence of two messages (or just one if the subroutine doesn’t return).
There are also examples, such as radio and human speech, in which a message
will be lost if the receiver is not listening; in practice these are always wrapped in
buffers and re-transmission protocols in order to make a reliable communication
channel, and so they too are best regarded as message-passing media.

2.3. MOBILITY 19

Asynchronous communication also has significant advantages over synchronisa-
tion. It is possible to write an asynchronous π-calculus process that forwards mes-
sages from one channel to another, in such a way that a sender and a receiver
connected by a chain of forwarders can communicate as if the forwarders weren’t
there. It is also possible to encode multi-way communication, with one receiver
but several senders, into the two-way communication that the calculus provides
as primitive, without any observable artifacts. The impossibility of these feats in
ordinary π-calculus suggests that maybe it is not all there [ref πF -calculus].

2.3.3.1. Syntax. The syntactic restriction that turns the π-calculus into the asyn-
chronous π-calculus is to forbid output guards from guarding anything. The syn-
tax for sending a message is simply xy. The name x identifies the channel on
which to send, and the message is the name y. There is no continuation process.
Also, messages are processes, not sums, and so the + operator can’t be applied to
them.

The syntax of the finite subset of the asynchronous π-calculus is that accepted by
the following grammar:

DEFINITION 2.3.5. (Asynchronous π-calculus)

〈sum〉 ::= 0 | 〈sum〉+ 〈sum〉 | 〈name〉 (〈name〉). 〈process〉
〈process〉 ::= 〈sum〉 | 〈name〉 〈name〉 | 〈process〉|〈process〉 | ν 〈name〉 . 〈process〉

The name y is bound in x(y).P and νy.P . All other names are free. There are no
side-conditions.

2.3.3.2. Operational semantics. The definition of the structural congruence and
the reaction relation closely follows the π-calculus. The crucial rule is this:

xy | x(z).P + S −→ P [z 7→ y]

It seems quite difficult to come up with a tidy definition of the labelled transition
relation, by which I mean one in which the derivation of a transition is structured
according to the syntax of the process. Most attempts in the literature either appeal
to the structural congruence [14] or modify the definition of bisimilarity [25, 33]. I
have found a proper structure-respecting definition for MIN, but it does not adapt
well to the asynchronous π-calculus. I will therefore just follow [14].

DEFINITION 2.3.6. (Labelled transition relation)

Let the actions be defined by the following grammar:

〈action〉 ::= τ | xy | xy | x(y)

Let n(α) be the set of all names in an action α, and let bn(α) be the subset of names
inside brackets.

Let the labelled transition relation be the smallest ternary relation satisfying the fol-
lowing rules:

0
xy−→ xy xy

xy−→ 0 xy | x(z).P τ−→ P [z 7→ y]

P
α−→ P ′ bn(α) ∩ fn(Q) = {}

P | Q α−→ P ′ | Q
P

α−→ P ′ z /∈ n(α)

νz.P
α−→ νz.P ′

P
xy−→ P ′ x 6= y

νy.P
x(y)−−−→ νy.P ′

P ≡ α−→≡ P ′

P
α−→ P ′

2.4. CALCULUS-INDEPENDENT TECHNOLOGY 20

Note that none of the input or output actions are used to derive τ steps. In partic-
ular, the motivation behind the distinction between the two kinds of output action
xy and x(y) is far from clear. Superficially, there is no reason to believe that bisim-
ilarity over these transitions will be a congruence. Surprisingly, however, ground,
early and late bisimilarity all coincide, and moreover are closed under substitu-
tions, so they are congruences and coincide with open bisimilarity. This is true of
both the strong and weak cases.

The congruences are rather larger than any of the corresponding π-calculus con-
gruences. For example, x(y).xy is weak bisimilar to 0, despite the fact that the
former reads from the channel x. This reflects the fact that no asynchronous π-
calculus process can observe that a message it has sent has been received. When
the asynchronous π-calculus first appeared, many people dismissed it as trivial
because they missed this important point.

2.3.4. Join calculus. The join calculus is an asynchronous process calculus,
formed by imposing a further syntactic restriction on the asynchronous π-calculus [11].
Although I discovered it long after fixing the design of MIN, it deserves a mention
here because it shares motivation and therefore design decisions with MIN. It gets
rather little attention from [33], so don’t look there.

The syntactic restriction is a discipline on the use of restriction and summation.
Both are replaced by a single syntactic construction. Approximately, the join cal-
culus term def x(z).P + y(z).Q in R has the same operational semantics as the
asynchronous π-calculus term νx.νy.((x(z).P + y(z).Q) | R). However, this is not
the conventional syntax, and does not do justice to the richer construct that is in
fact available. I refer you to [11] for the full details.

This construction shares with MIN a determination to control the scope of sums,
in some way, to facilitate linking and to permit an efficient implementation. In the
join calculus, this is achieved by controlling the scope of the channels on which
the sums are listening. In MIN it is achieved by naming the sums (which I call
destructors), and restricting the scope of their names. I think this difference fol-
lows from my decision to make MIN a linear calculus, but I’m not sure. Certainly,
communication in the join calculus is many-to-one, but in MIN is one-to-one (in
the asynchronous π-calculus it is many-to-many).

An interesting consequential difference is that the scope of a join calculus sum can
be extruded just like any other name; in MIN destructors are not communicable
values, so the effect must be achieved using a different mechanism: wires.

2.4. Calculus-independent Technology

This section describes two important ideas about process calculi that I have bought.

2.4.1. Reaction-based process semantics. The distinction between asynchro-
nous bisimilarity and the restriction of (any) π-calculus bisimilarity to the asyn-
chronous π-calculus was the catalyst for interest in reaction-based equivalences.
Although there was originally no real argument to support the claim, everybody
accepted that bisimilarity for CCS was about as large as it could be. An argument
finally appeared in [24], for the π-calculus. However, the asynchronous π-calculus
provided the first clear example in which the obvious approach (the one extrapo-
lated from CCS) gave a relation that was much smaller than it should be.

In order to drive this point home, Honda and Yoshida set out to construct the
largest bisimulation-like equivalence for the asynchronous π-calculus that they

2.4. CALCULUS-INDEPENDENT TECHNOLOGY 21

could [14]. The details of their construction are a little esoteric, and I will gloss
over them enough not to encounter differences from the approach in [24]. The
important point is that the definition must depend on the syntax of the calculus,
the reaction relation, and as little else as possible.

In particular, the definition must not depend on first choosing the right labelled
transition relation. On the contrary, it should provide a way of arguing that the
labelled transition relation is right. In my opinion, a result of this sort is an impor-
tant part of the theory of any process calculus.

An attractive feature of the approach is that it is almost entirely portable between
calculi. Using the terminology of [14], an observational equivalence relation should
satisfy three properties: it should be context-closed, reduction-closed and sound.

The definition of context-closure is uncontroversial:

DEFINITION 2.4.1. (Context-closed)

Say a relation R is context-closed iff P R Q implies C[P] R C[Q] for all processes
P and Q and syntactic contexts C[].

The definition of reduction-closure can be varied to obtain different kinds of bisim-
ilarity. This version looks like, and leads to, weak bisimilarity:

DEFINITION 2.4.2. (Reduction-closure)

Say a relation R is reduction-closed iff it is symmetric and R −→ ⊆ −→∗ R.

The purpose of the soundness condition is to ensure that not all processes are re-
lated. The definition can vary greatly, but the general form is that a relation R is
sound if P R Q implies f(P) = f(Q) for some function f that must be chosen
in an ad-hoc way for a particular calculus and application. The freedom of choice
available here is uncomfortable, but it is not a problem in practice, as almost any
calculus comes with some property that is obviously enough to distinguish pro-
cesses. For example, this definition is appropriate for the asynchronous π-calculus:

DEFINITION 2.4.3. (Soundness)

Define the predicate f(P) on processes P to be true iff P −→∗≡ xy | P ′ for some
names x and y and process P ′.

Say a relation R on processes is sound iff f(P) = f(Q) whenever P R Q.

The most important property of soundness is that if R is sound then so is R R.
If this property does not hold, then there is no guarantee that the largest sound
relation of a particular kind is transitive. One cannot explicitly ask for the largest
transitive sound relation of a particular kind, because the axiom for transitivity
involves as premises two elements of the relation: if not P1 R P3 then which of
the elements P1 R P2 and P2 R P3 should be removed? This mistake is subtle
and one sometimes sees it in the literature [11]. The form given above, in terms of
a function, is guaranteed to have the required property.

We are now ready to define the observational equivalence:

DEFINITION 2.4.4. (Barbed bisimilarity)

Say two processes P and Q are barbed bisimilar iff P R Q for some context-closed,
reduction-closed, sound relation R.

Sometimes one sees the following definition instead:

2.4. CALCULUS-INDEPENDENT TECHNOLOGY 22

DEFINITION 2.4.5. (Barbed congruence)

Say two processes P and Q are barbed congruent iff C[P] R C[Q] for all contexts
C[] for some reduction-closed, sound relation R.

In other words, context-closure is required only at the very first step of the bisim-
ulation game. This makes no difference for the asynchronous π-calculus. For MIN
I have used the first form.

As an unintended side-effect of establishing that the ordinary π-calculus congru-
ences are too small for the asynchronous π-calculus, Honda and Yoshida managed
to show that their own, larger, asynchronous bisimilarity was also too small. The
awkward example involves an equator process:

Exy = µV.(x(z).(yz | V) + y(z).(xz | V))

Intuitively, Exy simply establishes a perfect connection between the names x and
y, so Exy | P [y 7→ x] and Exy | P [x 7→ y] should be (weakly) equivalent for all P .4

They are indeed weak barbed bisimilar. However, Exy | zx and Exy | zy are not
weak labelled bisimilar.

I am not aware of any work that successfully bridges the gap between the labelled
and barbed bisimilarities for the asynchronous π-calculus. In MIN, thanks to the
technology of the πI-calculus, labelled and barbed bisimilarity do coincide.

Here is a table summarising whether or not some important calculi have labelled
congruences that match their barbed congruences:

Calculus Labels okay?
CCS yes

π no
πI yes
Aπ almost

MIN yes

2.4.2. Asynchrony. Although the literature now includes a variety of calculi
that everyone agrees are asynchronous, the definition of asynchrony remains in-
formal. Roughly, a calculus is asynchronous unless a sender can observe that
its message has been received without any cooperation from the receiver. Peter
Selinger has made the boldest attempt to formalise this definition [34]. His ap-
proach is to identify redundancy in the labelled transition relation of a sort that
must exist in order to hide information from senders.

Selinger’s work is good, but the problem is far from solved. He considers three
example systems that differ in the behaviour of the composition operator. For each
he identifies sufficient and necessary conditions on the labelled transition system
for the possibility of defining a transparent process, whose composition with any
other process behaves just like the other process, up to weak bisimilarity. I have no
doubt that this is the right criterion. As you might expect, the conditions depend
significantly on the composition operator. Unfortunately, and despite tantalising
commonality, the three sets of conditions have yet to be understood as members
of a more general pattern.

The most complex of Selinger’s examples is what one might call asynchronous
CCS. I will leave you to guess what this calculus is, either by removing output
guards from CCS, or by removing channel-passing from the asynchronous π-calculus.

4Equators are therefore a bit like fusions

2.5. FUNCTIONAL PROGRAMMING 23

The other two calculi both separate the channels into inputs and outputs. They dif-
fer in that the order of the messages on different channels is significant in one (the
queue model) but not in the other (the buffer model). None of these is a channel-
passing calculus, and as far as I am aware asynchrony conditions have never yet
been worked out for a channel-passing calculus.

There are real practical benefits to be gained by finding asynchrony conditions
for a calculus. Julian Rathke argues convincingly that redundancy in the labelled
transition relation can be exploited to simplify the task of checking program equiv-
alence [30]. Often, it makes the difference between an infinite and a finite calcula-
tion.

The current situation is a little unfortunate for MIN. Although it is undoubtedly
asynchronous in the informal sense, MIN has a composition operator that differs
from all three of Selinger’s examples, and from the asynchronous π-calculus, and
moreover MIN is a channel-passing calculus. I have struggled to achieve a par-
tial understanding of MIN’s asynchrony, which I have found valuable in many
places, and indispensable in at least one, as you will see in chapter 3. Interestingly,
it appears to be much closer to a mixture of Selinger’s queue- and buffer-based
asynchrony than it is to asynchronous CCS.

My partial understanding consists of no less than twelve conditions, which I know
to be sufficient for asynchrony, but I do not know that some of them are necessary.
Also, one depends on a complex auxiliary definition that classifies input transi-
tions as necessary or superfluous.5 In summary, the work is not yet ready to be
published. However, I could not avoid including seven of the conditions (the ti-
dier ones, fortunately) in chapter 3. Even as they stand, they push the boundary
of this corner of research.

2.5. Functional Programming

For a while, there was a long list of features that were unique to functional pro-
gramming languages. These included garbage collection, a formal semantics, strong
types, algebraic types, referential transparency, and anonymous function closures,
for example. These days most of these features have found their way into other
kinds of language. Java has garbage collection and enough information hiding to
support referential transparency, for example, and Python has anonymous func-
tions. Approaching the divide from the other end, both ML and OCaml (which
are functional languages) have mutable storage and a defined order of execution.
Thus, the classification of certain languages as functional has become somewhat
arbitrary.

One defining characteristic remains sharp, and it is a matter of design philosophy.
On the one hand there are languages which rely for their efficiency of providing
programmers with the means to direct the compilation minutely, and on the other
there are languages, including functional languages, whose compilers rely on the
mathematical tractability of the language. This divide is likely to remain sharp for
ever, at least for high-performance languages, because a strategy between the two
does not work, as Python or any other scripting language will witness [?]. MIN
falls on the same side as functional languages: it relies on mathematical tractabil-
ity. In this respect it is practically unique among languages designed for concur-
rency.

5This definition is very much along the lines of Fernández and Mackie’s work on Interaction Nets,
interestingly.

2.5. FUNCTIONAL PROGRAMMING 24

This is not the easiest way to design a programming language. You absolutely
have to write a good compiler, or you will not get good performance. However,
it is an attractive approach because many of the pessimisations necessary to write
properly structured, maintainable programs are of a mathematically fairly simple
form. I’m thinking of opaque types, templates, and liberal use of combinators, for
example. This also applies to pessimisations such as null pointer checking that can
be used to get important safety properties. Given a clever compiler, these desirable
pessimisations do not cost anything.

2.5.1. Structure of a compiler. The strategy of relying on mathematical tractabil-
ity implies a structure for the language’s tool chain. After lexing and parsing, the
first step in compiling a program is to expand the syntactic sugar, to obtain a term
of a core language. For a functional language, this will be some sort of enriched
lambda calculus. Type inference and checking is performed in the core language.
The program is then heavily analysed and transformed, all within the core lan-
guage. All interesting optimisations happen at this stage. The program then goes
through a lambda lifting step, which I will describe below. Finally it is fed to a code
generator that looks a lot like a C compiler. In the case of the Glasgow Haskell
Compiler described in [28], the code generator actually is a C compiler.

Obviously there are variations on this pattern. GHC is primarily a batch compiler,
but the overall structure can also be applied to a language that is based on a vir-
tual machine. The higher-level stages of the compiler, down to and including the
lambda lifting step, remain in the compiler. The file format which results then
forms the executable format for the virtual machine. The virtual machine’s JIT
compiler then completes the compilation when the program is run.

MIN is a language based on a virtual machine, and it follows the above pattern.
The high-level language has not yet been designed; that part of the project is not
risky. The calculus called MIN that is the object of study of this thesis is intended to
be the executable format of the virtual machine. This puts it after the lambda lifting
step. In studying optimisations of MIN, I am implicitly exploiting the fact that the
lambda lifting step is reversible. This variation has been used for functional lan-
guages too [6]. The language corresponding to MIN but before the lambda lifting
step might look rather more like an ordinary π-calculus.

Thus one of my key innovations is an understanding of the lambda lifting step in
the context of process calculi.

2.5.2. Lambda lifting. Restricting attention to functional languages for a mo-
ment, the purpose of the lambda lifting step is to cope with the substitution oper-
ation which appears in the definition of beta-reduction in the lambda calculus. If
approached naively, substitution is the most expensive operation that the imple-
mentation will perform. Substitution also appears in the definition of the reduc-
tion relation of the π-calculus, and so lambda lifting is relevant to process calculi
too.

The naive approach to implementing substitution is exemplified by the idea of
compiling the lambda calculus into a term built from the S and K combinators,
which is a famous failure. More generally, breaking every beta-reduction down
into a sequence of smaller operations chosen from some finite menu is a mistake.
The recommended approach to compiling a program [27] is instead to choose a
different system of combinators, with similar properties to S and K, but tailored

2.5. FUNCTIONAL PROGRAMMING 25

for that particular program. Each beta-reduction then maps onto a single beta re-
duction in the combinator reduction system, thus eliminating a lot of unnecessary
control flow logic. This is what lambda lifting does.

2.5.2.1. Example: quicksort. I am aware that the lambda lifting algorithm may
not be familiar to many readers, so I will illustrate it with an example. Here is a
quicksort program, written in some imaginary functional language (a mixture of
SML and OCaml, but allowing ‘let’ expressions to be recursive):

let quicksort gt =
let qsappend acc [] = acc

| qsappend acc (pivot::xs) =
let partition gts lts [] = (gts, lts)

| partition gts lts (x::xs) =
if gt pivot x
then partition (x::gts) lts xs
else partition gts (x::lts) xs in

let (gts, lts) = partition ([], []) xs in
qsappend (pivot::(qsappend acc gts)) lts in

qsappend [] in
quicksort;

As is typical of functional programs, the functions partition and qsappend
have free variables in addition to their formal arguments. Specifically, qsappend
mentions itself and the comparison function gt free, and partition mentions
itself, gt and pivot . The first step is to remove these using beta-expansion. Note
that it is possible to beta-expand from partition the whole of gt pivot at once.

let $quicksort gt =
let $qsappend qsappend gt acc [] = acc

| $qsappend qsappend gt acc (pivot::xs) =
let $partition partition gt_pivot gts lts [] = (gts, lts)

| $partition partition gt_pivot gts lts (x::xs) =
if gt_pivot x
then partition (x::gts) lts xs
else partition gts (x::lts) xs in

let partition = $partition partition (gt pivot) in
let (gts, lts) = partition [] [] xs in
qsappend (pivot::(qsappend acc gts)) lts in

let qsappend = $qsappend qsappend gt in
qsappend [] in

$quicksort;

The expanded functions are the ones whose names begin with a $. Each such
definition is immediately followed by a ‘let’ expression that binds the old function
name to an expression equivalent to its old definition.

The functions are now all combinators (that is, they have no free names), and can
be promoted to the top level. The other ‘let’ bindings must stay where they are.

let $partition partition gt_pivot gts lts [] = (gts, lts)
| $partition partition gt_pivot gts lts (x::xs) =

if gt_pivot x
then partition (x::gts) lts xs
else partition gts (x::lts) xs in

2.5. FUNCTIONAL PROGRAMMING 26

let $qsappend qsappend gt acc [] = acc
| $qsappend qsappend gt acc (pivot::xs) =

let partition = $partition partition (gt pivot) in
let (gts, lts) = partition [] [] xs in
qsappend (pivot::(qsappend acc gts)) lts in

let $quicksort gt =
let qsappend = $qsappend qsappend gt in
qsappend [] in

$quicksort;

In fact, the functions are supercombinators (that’s what the $ stands for).

DEFINITION 2.5.1. (Supercombinator)

A supercombinator is a combinator of the form λx1. . . . λxn.E where all lambda
abstractions in E are themselves supercombinators.

Supercombinators are especially easy to compile, for two reasons. First, all ar-
guments must be supplied before the body can be instantiated; there’s no point
in doing any work until that moment. Second, the only information needed to
instantiate the body is the values of the arguments. A supercombinator therefore
compiles nicely into a single straight-line piece of machine code (in the simple case
of no pattern-matching).

2.5.3. Correspondence of concepts.

• The π-calculus concept that corresponds to a lambda abstraction is an
input prefix.

• The π-calculus transformation that corresponds to the well-known ‘case-
of-case’ transformation of functional programs is the expansion rule.

• The MIN concept that corresponds to a supercombinator is a destructor.
• The MIN concept that corresponds to the body of the supercombinator is

the collection of rewrite rules of the destructor.
• The MIN concept that corresponds to an argument of the supercombina-

tor is a port of the destructor.
• The MIN concept that corresponds to the final (often pattern-matched)

argument of a supercombinator is the principal port of the destructor.

Bibliography

[1] Andrea Asperti and Stefano Guerrini, The Optimal Implementation of Functional Programming Lan-
guages, Cambridge University Press (1998).

[2] Nick Benton and Andrew Kennedy, Monads, Effects and Transformations, ??? (1999).
[3] G. Berry, and G. Boudol, The Chemical Abstract Machine, Theoretical Computer Science, 96,

pages 217–248 (1992).
[4] Gavin Bierman, Andrew Pitts and C.V. Russo, Operation Properties of Lily, a Polymorphic Linear

Lambda Calculus with Recursion, Hoots (2000).
[5] Damien Doligez and Xavier Leroy, A concurrent, generational garbage collector for a multi-threaded im-

plementation of ML, Proceedings 20th Symposium on Principles of Programming Languages (1993)
pages 113–123.

[6] Marko van Eekelen, Sjaak Smesters and Rinus Plasmeijer, Graph Rewriting Systems for Functional
Programming Languages, ??? (1996?).

[7] Maribel Fernández, Type assignment and Termination of Interaction Nets, Mathematical Structures in
Computer Science (1995), volume 11.

[8] Maribel Fernández and Lionel Khalil, Interaction Nets with McCarthy’s ‘amb’: Properties and Appli-
cations, Nordic Journal of Computing ??? (2003).

[9] Maribel Fernández and Ian Mackie, Coinductive Techniques for Operational Equivalence of Interac-
tion Nets, Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science (1998)
pages 321–332.

[10] Maribel Fernández and Ian Mackie, Operational Equivalence for Interaction Nets, Theoretical Com-
puter Science 297 (2003) pages 157–181.

[11] Cédric Fournet, and Georges Gonthier, The reflexive CHAM and the join-calculus, POPL ’96.
[12] Van Glabeek, The Linear Time - Branching Time Spectrum I, Report CS-R9029, CWI Amsterdam

(1990).
[13] Kohei Honda, The Asynchronous π-calculus, ??? (199?).
[14] Kohei Honda and Nobuko Yoshida, On Reduction-based Process Semantics, TCS 152(2) pages 437–

486 (1995).
[15] Kohei Honda, Notes on Undirected Actions, ??? (1995)
[16] Yves Lafont, Interaction Nets, Proceedings of the 17th ACM Symposium on Principles of Program-

ming languages (POPL ’90), pages 95–108. ACM Press, 1990.
[17] Yves Lafont, Interaction Combinators, Information and Computation, 137(1), pages 69–101, 1997.
[18] Xavier Leroy, Manifest types, modules, and separate compilation, Proceedings of the 21st Sympo-

sium on Principles of Programming Languages, pages 109–122 (1994).
[19] Xavier Leroy, A syntactic theory of type generativity and sharing, Journal of Functional Programming

6 (5): pages 1–32 (1996).
[20] Xavier Leroy, The effectiveness of type-based unboxing, Workshop in “Types in Compilation”, Ams-

terdam (June 1997).
[21] Ian Mackie, Interaction Nets for Linear Logic, Theoretical Computer Science 247 (2000) pages 83–140.
[22] Ian Mackie and Jorge Sousa Pinto, Compiling the λ-calculus into Interaction Combinators, ??? (1998).
[23] Robin Milner, Calculus of Communicating Systems. Lecture Notes in Computer Science ’92, Springer-

Verlag (1980).
[24] Robin Milner, and Davide Sangiorgi, Barbed Bisimilarity, Proceedings of ICALP ’92, Lecture Notes

in Computer Science 623, pages 685–695, Springer-Verlag (1992).
[25] Uwe Nestmann and Benjamin Pierce, Decoding Choice Encodings, Basic Research in Computer Sci-

ence RS-99-42 (1999).
[26] Joachim Parrow, and Peter Sjödin, Multiway Synchronization Verified with Coupled Simulation, Pro-

ceedings of Concur ’92, volume 630 of LNCS, pages 518–533, Springer (1992).
[27] Simon Peyton Jones, The implementation of Functional Programming Languages, Prentice-Hall (1987).
[28] Simon Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain and Phil Wadler, The Glasgow

Haskell compiler: a technical overview, Proceedings of the UK Joint Framework for Information Tech-
nology (JFIT) Technical Conference, Keele (1993).

27

BIBLIOGRAPHY 28

[29] Jorges Sousa Pinto, Sequential and Concurrent Abstract Machines for Interaction Nets.
[30] Julian Rathke, Resource-based Models for Asynchony, ??? (???).
[31] Didier Rémy, and Jérôme Vouillon, Objective ML: An effective object-oriented extension to ML, Theory

and practice of object systems ??? (1998).
[32] Davide Sangiorgi, π-calculus, internal mobility, and agent-passing calculi, (1995). Parts can be found

in Proceedings of TAPSOFT ’95 and ICALP ’95.
[33] Davide Sangiorgi, and David Walker, The π-calculus, A Theory of Mobile Processes, Cambridge Uni-

versity Press (2001).
[34] Peter Selinger, First-order Axioms for Asynchrony, ??? (???).

