
CHAPTER 1

Introduction

1

CHAPTER 2

Background

3

CHAPTER 3

MIN

The ‘native’ notation for MIN is the graphical notation introduced in chapter 1. It is
concrete, modelling the structure of programs visually, supporting a simple balls-
and-strings metaphor for manipulating that structure, and executing by simple
scissors-and-glue rewriting. This makes it easy to teach and use. It also makes it
easy to see through the notation, to read a program written in it, and to reason
about it. However, it does not make it easy to reason about MIN itself.

This chapter defines an alternative notation for MIN, based on a conventional tex-
tual grammar. It explains the relationship of the two notations, formally as far as
possible, which is not quite all the way. It then uses the textual notation to prove
the assertion made in chapter 1, that the labelled transition system is a sound and
complete technique for proving that programs are or are not (barbed) equivalent.
It is this result that makes an optimising MIN compiler a practical possibility.

3.1. The theorem

I claim that MIN makes a good intermediate language for a compiler. The sole rea-
son I believe it to be better for this purpose than other languages, such as the many
that resemble assembler, that are of similar complexity and capable of expressing
the same programs, is that it is more tractable. Where other languages express in
great detail what a program must do, MIN expresses only how a program must
make its decisions, and how it must interact with other programs. The ways in
which a compiler may choose to implement the program are limited only by its
own ingenuity, and by a clause in the language definition.

The clause states the conditions under which one MIN program is a valid imple-
mentation of another MIN program. The intention (although several parts of the
story remain untold) is that the compiler should take a program in a high-level
language, encode it literally into a MIN program, transform it (using techniques
founded on this thesis) into the MIN encoding of some machine code, and then
execute that machine code. Although MIN has a concrete operational semantics,
based on graph rewriting, a literal implementation of those semantics should only
be considered an option of last resort.

The grand theorem of this chapter is that two different ways of defining whether
or not an implementation of a program is valid coincide. The theorem is important
because it connects a definition which is easy to motivate with one that is easy to
apply. I hope it will leave future researchers in no doubt as to what is the simplest
way to attain confidence in their optimisations.

5

6 3. MIN

3.1.1. Barbed coupled similarity. The definition of the ‘can be implemented
as’ relation is based on the process calculus literature reviewed in chapter 2. In
the context of that literature, it would be known as barbed coupled similarity. It is
defined in terms of MIN’s operational semantics, and in terms of the definition of
linking. The story was told for CCS in chapter 2, but I will repeat the important
parts. Here, these definitions are given slightly informally. They will be repeated
again formally using the textual notation in section 3.8.1.

DEFINITION. (MIN+)

The definition of MIN includes a set of permissible constructor symbols. For the
sake of concreteness, we may imagine that this is the set of strings in some alpha-
bet. Let MIN+ be defined in exactly the same way, but with a set of constructor
symbols that is larger by 1. The extra constructor symbol (which is different from
all constructor symbols in MIN) will be called ‘test’.

DEFINITION. (Well-formed relation)

Say a relation on programs is well-formed if it only relates programs with the same
interface. An example of a well-formed relation is the rewrite relation. Barbed
coupled similarity will be another example.

DEFINITION. (Context-closed)

Say a well-formed relation
�

is context-closed iff, for every element � � � and for
every program � with a compatible interface, we find ����� � � ��� (in which �
represents the operation of linking programs).

DEFINITION. (Reduction-closed)

Say a well-formed relation
�

is reduction-closed iff, whenever � � �
and

�	��

�
���

, there is a � � such that � ��
�� � � and � ��� ���
(in which

��

is the rewrite

relation).

DEFINITION. (Sound)

Say a well-formed relation
�

is sound iff, for every element � � �
, the main

graph of � contains ‘test’ iff the main graph of
�

contains ‘test’.

DEFINITION. (Coupled)

Say a well-formed relation
�

is coupled iff, whenever � � �
, there is a � � such

that � ��
�� � � and
��� � � .

DEFINITION. (Barbed coupled similarity)

Say a well-formed relation is a barbed coupled simulation iff it is context-closed,
reduction-closed, sound and coupled.

Define barbed coupled similarity, written ��� , to be the restriction to MIN of the
largest barbed coupled simulation on MIN+ programs.

The great attraction of barbed coupled similarity is that all the conditions imposed
on it are easy to motivate. Context closure states that if the compiler claims to have
implemented a program, it may not change its mind after seeing what it will be
linked with. Reduction closure states that it may not change its mind after seeing
what the program does when it is executed. Soundness states, when combined

3.1. THE THEOREM 7

with context closure, that a program linked with an implementation must not be
able to discover that it is not linked with the original program (if it could, it could
signal its discovery using a ‘test’ node). Coupling states, when combined with re-
duction closure, that an implementation must do at least one of the things that the
original program could do, and in particular that it must not crash if the original
program doesn’t. All of these are basic sanity requirements.

3.1.2. Labelled coupled similarity. The great problem with barbed coupled
similarity is that its definition only provides obvious ways of proving that an im-
plementation of a program is not valid. There is no obvious way to make sure that
one is. This models the real world well, but is rather inconvenient. We therefore
also define labelled coupled similarity which is much easier to check (although it still
includes the halting problem as a special case), but which cannot easily be moti-
vated. The definition appears quite arbitrary. It isn’t, however, because it coincides
exactly with barbed coupled similarity.

Labelled coupled similarity is defined not in terms of MIN’s operational seman-
tics, but in terms of a labelled transition system. Elements of this new ternary re-
lation are of the form ����
 � � where � and � � are programs and � is an action.
The labelled transition system agrees with the rewrite relation1 in the sense that
whenever � ��
 � � we also have � ��
 � � , where � is the special silent action.
However, there are also many more actions, interpreted as communications with
other programs. It is these new actions that are difficult to motivate.

The definition of MIN’s labelled transition system was given in the graphical no-
tation in chapter 1, but I will repeat it.

DEFINITION. (Labelled transition system)

There are three kinds of action:
� The silent action is called � . Silent transitions are defined to match the

rewrite relation, as previously explained.� An input action is of the form ��� 	�
��
 , and represents the receipt of a mes-
sage � at the free port named � , replacing it with zero or more new free

ports named

� . Graphically, ������������� � �
 � � represents the attachment of a

constructor � to the main graph of � to obtain � � . The principal port of
the constructor is joined to the free port named � , and the auxiliary ports
remain free and are named

� . Such a transition is possible whenever � �
is well typed.� An output action is of the form ��� 	�
��
 , and represents the sending of a
message � from the free port named � , replacing it with zero or more new

free ports named

� . Graphically, � ����������� � �
 � � represents the removal of

a constructor � from the main graph of � to obtain � � . The operation
is easiest to explain in reverse: the auxiliary ports of the constructor are
joined to the free ports of � � named

� , and the principal port remains
free in � and is named � . Such a transition is possible whenever � has a
constructor to remove.

1In the graphical notation. In the textual notation this statement must be weakened, because the
textual notation makes more distinctions.

8 3. MIN

Figure [3G] shows the complete labelled transition system of the example program
in figure [3F]. The program cannot perform any reactions on its own, but it could
show some behaviour when linked with other programs. The input and output
transitions provide a way to explore all this potential behaviour, without explicitly
considering linking.

DEFINITION. (Labelled coupled similarity)

Say a well-formed relation
�

is a labelled simulation iff:

� Whenever � � � and
� ��
 � � �

there is a � � such that � ��
 � � � and
� � � ��� .� Whenever � � � and

� ��
 � ��
 ��
 � ���
there is a � � such that � ��
 � ��
 ��
 �

� � and � � � � � .
Define labelled coupled similarity, written � � , be the largest coupled labelled simu-
lation.

THEOREM. (Purpose of this chapter)

� � and � � coincide.

3.1.3. Outline of proof. To show that � labelled coupled simulates
�

it is nec-
essary and sufficient to demonstrate that they are related by some labelled coupled
simulation

�
. Similarly, to show that � barbed coupled simulates

�
it is necessary

and sufficient to find a barbed coupled simulation. Our task is therefore to con-
struct a labelled coupled simulation containing � � and a barbed coupled simula-
tion containing � � .

In fact, it will turn out that ��� is already a labelled coupled simulation. It is cer-
tainly already coupled, but we have to check that if � � � � and

� ��
 � ���
then

� ��
 � � � and � � � � ��� (which is almost exactly the definition of reduction-closed)
and a similar condition for non-silent actions. Input transitions are a special case
of linking, so context-closure takes care of them. Output transitions require a little
more work. We have to show that we can link any program with a test harness
in such a way that if the original program could perform an output then the in-
strumented program can react so as to create a ‘test’ node. The result then follows
from context-closure (to link with the test harness), reduction-closure (to detect the
output) and soundness.

To turn � � into a barbed coupled simulation we must simply extend it from MIN
to MIN+. This involves linking with programs that may contain ‘test’. Since ‘test’
nodes can only arise from the linking context, the resulting relation is sound.
It remains coupled, and the close relationship of

��

and

��

ensures that it is

reduction-closed. However, it is far from obvious that it is context-closed, and
a large fraction of the proof is dedicated to this part alone.

3.2. The textual notation

The best way to think of a textual program is as a series of steps in the construc-
tion of a graphical program. By the end of this section, you should be able, at an
informal level at least, to read a textual program and construct and write down the

3.2. THE TEXTUAL NOTATION 9

corresponding graphical program. You should also be able to reverse the process,
although there are many constructions of any graphical program, so the textual
program will not be unique.

The previous paragraph contains a small lie. The textual notation in this chapter is
not capable of expressing any type information. This important short-coming will
be fixed in chapter 4.

3.2.1. Environments and processes. Figure [3A] shows an example graphi-
cal program, and a corresponding textual program. It is the AND example from
chapter 1. The large-scale syntax of the textual version is ‘let � in � ’. In this con-
struction, the set � is called an environment, and corresponds to the rewrite rules
of the graphical program, and � is called a process, and corresponds to the main
graph. Although this construction deliberately looks a little like one found in
functional languages, programs and processes are different syntactic classes; for
example ‘let � in let � in � ’ is not syntactically correct.

The node and type declarations of the graphical program have no counterpart in
the textual one. In the graphical notation, declarations serve two purposes: they
define the types, and they add plenty of redundancy that a compiler can use to
spot errors. Since types will be handled separately, and since the textual notation
is not intended for programming, declarations serve no useful purpose.

An environment is a set of rewrites, each of the form � ��
 � � , in which � and � �
are processes, with the same syntax as the main graph. This closely follows the
graphical notation, in which rewrites consist of a pair of graphs. In fact, it is true
in general that the textual notation uses processes wherever the graphical notation
uses graphs. As in the graphical notation, the redex � is constrained to a special
form, and must have the same free ports as the reduct � � . Unlike the graphical
notation, it is necessary to name the free ports, although the choice of names is of
no consequence.

3.2.2. Atoms and trees. It remains, then, to explain how a process represents
a graph. This is, of course, the most interesting part. A process consists of one
or more atoms, joined together using an operator � . In figure [3A] we have been
lucky in not needing the � operator at all, as all the graphs are atoms, but this is
not true in general. Atoms are graphs of a special form, with the property that any
graph can be broken in to atoms (in many ways).

The empty graph is an atom. Apart from this special case, atoms are made of
trees. Trees are graphs of an even more special form. A graph is a tree iff it is
singly-connected, it contains only constructors, and all of its internal wires join a
principal port to an auxiliary port. Recalling that constructors must have exactly
one principal port, a tree must therefore have exactly one free principal port, which
is called its root, the other free ports being leaves. The remaining two kinds of atom
are: two trees joined together at the root; or a destructor with a tree attached by
its root to each port. All three kinds of atom must therefore be singly-connected.
Figure [3B] shows some examples.

The textual notation for a tree is exactly what one would expect: one writes down
a term with a parse tree that looks like the tree. The examples in part (a) of fig-
ure [3B] are therefore � , � 	������	��

 and � 	
� 	 � 	������
 ��

 � � 	 � � �
�
 .

10 3. MIN

The three kinds of atom each have their own notation. The empty graph is written�
. The atom formed by joining the trees � and

�
at their root is written ��� ����� . The

atom formed by joining trees ��� to �	� to the
 ports of a destructor with symbol �
is written � 	 ��� �
����� � �	�
 . In the latter, it does not matter in what order the ports are
listed, as long as the same order is used wherever � appears. Halt nodes are treated
as destructors with symbol � . The examples in part (b) of figure [3B] are therefore�

, � � � � � , � � � � 	 � ���
 � , � 	 � 	�
 ���
 � � � �
 , � 	���� � 	��	��

 � � 	 � � � 	 � ���
�
�
 , � 	 � � � � � 	������	��

�
 .
The � operator joins two graphs together to make a new graph, in a manner that
is commutative but not always associative. Of the many ways of joining together
a given pair of graphs, one is chosen according to the names of their free ports. If
a port of one graph has a name that does not appear on any port of the other, it
remains free in the result and retains its name. Otherwise (that is, if a port of one
graph has the same name as a port of the other) the two ports are joined together
in the result, making an internal wire that has no name. You may recognise this
operation as the part of the definition of linking that concerns the main graph.
Figure [3C] shows an example, and figure [3D] shows a case in which � is not
associative.

To write down the examples in part (c) of figure [3B], they must be broken into
atoms. There are several ways of doing this. If we choose to do it as in figure [3E],
they are written �
 � � � ��� � ����� , � ��� � 	�
 � � � �
 � ��� �	� � 	�� � �
 � , �
 � � 	��	���
 � ��� 	�� � � � �
 ,
� 	�
 ��� ���
 ��� 	�� � � � �
 , � 	�
 ��� � �
 ���
 �����

, � � � � 	 � 	 � ��

 ���
 � ���
 �����
and � � � � � ��� � � � ���	 � ��� � � � �
 ��� � � � ��� � � � � � � 	 � � ����� ��� � �����
 .

3.2.3. Mathematical support. The correspondence of graphs to processes is
one-to-many. Of the several differences between the two notations, this one, at
least, can be handled formally in the textual notation. To do this, we define a struc-
tural congruence, written , which relates two processes iff they are constructions
of the same graph.

It is easy to check each of the axioms of the structural congruence to verify that
they do not change the graph, that is, that they are sound. It is rather harder to
check that the axioms are complete, as this involves graphical reasoning that we
do not know how to do. However, I believe them to be complete too.

Structural congruence impinges not only on the question of what a program is,
but also of what it does. For example, it appears in the definition of the reaction
relation, to ensure that constructions of the same graph have the same rewrites.
It does not appear, however, in the definition of the labelled transition relation.
Instead, we submit to a lengthy proof (culminating in theorem 3.7.11) that struc-
turally congruent processes can perform the same actions, and that they remain
structurally congruent. By doing this work just once, we earn the right to use a
convenient definition of the labelled transition relation. The effort is rewarded in
all subsequent proofs.

3.3. Definitions

MIN is defined in terms of a set � name
�

of names, a set � constructor
�

of constructor
symbols and a set � destructor

�
of destructor symbols. The structure of these sets

does not matter, but we need them to be countably infinite, and we need a way of

3.3. DEFINITIONS 11

choosing fresh elements. It is also convenient to distinguish a special destructor
symbol ‘ � ’, which we will use to stand for the canonical inert process.

DEFINITION 3.3.1. (Grammar, and free names)

MIN’s grammar is as follows:

� program
����� �

let � environment
�

in � process
�

� environment
����� �

a set of � rewrite
�

s
� rewrite

����� � � destructor
� 	 � tree

� ���
��� � � tree
�
 ��
 � process

�
� process

����� � � atom
��� � process

� ��� process
�

� atom
����� � � � tree

� � � tree
����� � destructor

� 	 � tree
� �����
� � � tree

�

� tree

����� � � name
��� � constructor

� 	 � tree
� �
����� � � tree

�

with four side-conditions.

The first is that all � name
�
s in an � atom

�
or � tree

�
must be different.

The second is that no � rewrite
� � 	
�
 ��
 � may have � � � .

The third is that in every � rewrite
� � ��
 � � there must be exactly one � constructor

�
in � .

For the fourth, we must first define the function fn
	
 which calculates the free

names of a � process
�
. If � is an � atom

�
, define fn

	 �
 to be the set of � name
�
s that

appear in � ; otherwise define fn
	 �
 � fn

	��
�� fn
		�
 where � �
� � � .2 Also, extend

fn
	
 to � tree

�
s in the obvious way, and extend it to � program

�
s by fn

	
let � in �
 �

fn
	 �
 .

The fourth side-condition is that every rewrite � ��
 � � must have fn
	 �
 � fn

	 � �
 .

The third side-condition is optional. Omitting it makes very little difference to
the maths, and none to the expressive power. However, it is required for a tight
correspondence with the graphical notation. You may like to work out what new
kinds of graph would be allowed to be redexes if this side-condition were omitted.

For readability, I will usually choose variable names according to a convention.
The convention serves no purpose besides readability. It is as follows:

� � name
�
s will be called

, � , � or

�
.� � constructor

�
s will be called � ,

�
or � .� � destructor

�
s will be called � , � or � .� � tree

�
s will be called � , � or

�
.� � process

�
es will be called � ,

�
,
�

or � .� � environment
�
s will be called � or � .� � program

�
s will be called � ,

�
or � .� Variables that stand for relations will be underlined.

2
 is the symmetric difference operator, defined so that �
������ ��� ������� ��� ������ � ��� � � ���!� � � . It occurs quite a lot in this chapter. It can be interpreted as pointwise addition
modulo 2 of the characteristic functions of � and � , or as pointwise XOR. It is commutative and
associative, and the empty set is its unit. Furthermore, �
 � �#"%$ for any set � .

12 3. MIN

Two bits of syntactic sugar are useful. First, let
�

mean � 	
 . We will use this to
represent the empty graph. Second, given two tuples of trees

� and

�

with
�
� � ��
��� �
 and no name appearing more than once, let �
� �
��� mean � ��� ��� � � � 		���
� �	 � � � ��� � � � �
 ���
�
 . This represents a bundle of parallel wires joining each ��� to the

corresponding
� � .

DEFINITION 3.3.2. (Alpha-conversion)

Say an injection � on � name
�
s is an alpha-conversion for � iff � 	 �
 � � for all ���

fn
	 �
 .

Let alpha-equivalence, written � , be the smallest congruence such that � � � 	 �

whenever � is an alpha-conversion for � .

Note that the identity function is an alpha-conversion for every � process
�
, that the

inverse of an alpha-conversion for � is another alpha-conversion for � , and that
the composition of two alpha-conversions for � is another alpha-conversion for
� . Thus, alpha-equivalence would be an equivalence relation even if it were not
defined to be. However, it would not be a congruence.

We adopt the convention of working up to alpha-conversion. This is a completely
standard technique that saves a lot of trouble. In the case of MIN it entails the
following:

� Whenever we write a � process
�
, or anything containing a � process

�
, we

understand that we mean its alpha-equivalence class. In particular,
� � �

means ��� � � � � �
� � � � � and

� � � � and
� � � �	� , which is equal to ��� � � � � �

� � � � � �
for any

� � � � and
� � � � .� For any � process

� � that is not an � atom
�
, we may nominate any finite set

of � name
�
s and then find

�
and

�
such that fn

	 �
�� fn
	��
��
 is empty

and � � � � � . This is justified by observing that the alpha-equivalence
class certainly includes pairs

� � � that do satisfy this property. However,
we must be careful to choose

before using

�
or
�
; for example fn

	��

certainly overlaps with fn

	��
 , despite the fact that it is finite.

DEFINITION 3.3.3. (Substitution)

Say a function
 from � name
�

to � tree
�

is a substitution iff fn
	
 	 �
�
�� fn

	
 	 �
�
 is
empty for all ���� � , and
 	 �
 is a � name

�
for all but finitely many � .

Define the result ��
 of applying a substitution
 to a process � in the obvious way
if � is an � atom

�
: replace each name � with
 	 �
 . Otherwise, use alpha-conversion

to find
�

and
�

such that � � � � � and
 	 �
 is a � name
�

for all ��� fn
	��
�� fn

	��
 ,
and define ��
 to be

�
 � �
 .

Given names

� and trees

� with
�
� � � �
� ���
 and no name appearing more than

once, and a � process
� � with fn

	 �
�� fn
	 �
� �
� �
 � �
� � , define ���
���

��� to be ��
 where

 is a substitution chosen so that
 	 � �
 � � � for all
�������
 and
 	 �
 � � for all� � fn

	 �
 � �
� � .

Note that ��
 and ���
� �

��� are always defined uniquely up to alpha-conversion.

3.3. DEFINITIONS 13

DEFINITION 3.3.4. (Structural congruence)

Define the structural congruence, written , to be the smallest congruence on pro-
cesses satisfying the following axioms:

� � � � STAR
�

� � � � � � STAR � fn
	 �
 � fn

	��
�� fn
		�
 � � �

� � 	 � � �
 	 � � �
 � � STAR �

��� ����� � ��� � � WIRE
fn
	 �
 � fn

	 � � � � �
 � ��� �
� � ���
 ��� � � � � � � � BUF

Extend the structural congruence to � program
�
s by let � in � let � in

�
iff � �

.

The structural congruence relates � process
�
es that construct the same graph. The

premise of STAR � is necessary on account of examples like the one in figure [3D].
Note that if � �

then fn
	 �
 fn

	��
 , that is, that the structural congruence is a
well-formed relation.

DEFINITION 3.3.5. (Reaction relation)

Let the reaction relation, written
��

, be the smallest relation on � program
�
s satis-

fying the following axioms, in which ��� � ��
 � � means let � in � ��
 let � in � � :	 � ��
 � �
 � �
��� � ��
 � � REACT

��� � ��
 � �
��� � � � ��
 � � � � PAR

� ��
 � �
� ��
 � � STRUCT

I will often omit ��� , and just write � ��
 � � .
The STRUCT rule is extremely powerful, and makes it rather difficult to prove
anything useful about the reaction relation. This is the textual counterpart of the
problem of proving anything about graphs. Note that if � ��
 � � then fn

	 �
 �
fn
	 � �
 , that is, that the reaction relation is well-formed.

DEFINITION 3.3.6. (Actions)

Let � action
�

be defined by the following grammar:

� action
����� � �� � name

� � constructor
� 	 � name

� �
����� � � name
�

� � name
� � constructor

� 	 � name
� �
����� � � name

�

with the side-condition that no � name

�
appears more than once in an � action

�
.

Extend fn
	
 to � action

�
so that fn

	 �
 is the set of all names in � .

I will usually use � to stand for an action, and when I want to be more specific I
will use � and � to stand for the two kinds of non-silent action.

DEFINITION 3.3.7. (Labelled transition relation)

Let the labelled transition relation , written � ��
 � � , be the smallest ternary relation
on � program

� � � action
� � � program

�
satisfying the following axioms, in which

��� � ��
 � � means let � in � ��
 let � in � � :
���� fn
	 � � � � 	
�
 �

��� � � � � 	
�
 � �������� �� � �
 �
� �
� � OUT � ��� � ��
 � � fn
	 �
�� fn

	 �
 � � �
��� � � � ��
 � � � � PAR �

14 3. MIN

� �� fn
	 � � 	
�
 � � �

��� � � 	
�
 � � � �������� �� � �
 �
� �
� � OUT �
fn
	 �
�� fn

	 �
 � � � ��� � ��
 � �
��� � � � ��
 � � � � PAR �

� � fn
	 �

���� fn

	 �

��� � ����������� � �
 ��� ���
 � 	�
�
 �

IN
��� �

��
 � � ��� �
��
 � � ��� � � � � � ��
 � �

��� � � � ��
 � � COM �

� ��
 � � � �
��� ��
 ��
 � �
 REACT

��� �
��
 � � ��� �

��
 � � ��� � � � � � ��
 � �
��� � � � ��
 � � COM �

I will often omit ��� and just write � ��
 � � .
This definition has a quite different style from that of the reaction relation. One
would expect it to be a little more complicated, given that it is defining a more com-
plicated relation. However, at least part of the complexity goes towards avoiding
a rule like STRUCT. This definition does not mention the structural congruence
at all. Furthermore, the labelled transitions of programs with non-atomic main
graphs are defined entirely in terms of the labelled transitions of programs with
smaller main graphs. This property is very valuable, and is impossible to achieve
for the reaction relation.

Later, I will prove (theorem 3.7.11) that labelled transitions obey a rule like STRUCT
anyway, even though no such rule appears explicitly in their definition. I will also
prove (proposition 3.7.13) that this definition is equivalent to the one given infor-
mally in chapter 1 and repeated in section 3.1.2.

DEFINITION 3.3.8. (Linking)

Fix two injections
�

and
�

on � destructor
�
s, with disjoint ranges, and extend them

to � process
�
es and � environment

�
s in the obvious way.

Define the result � � � of linking two programs � �
let � in � and

� �
let � in

�
to be let

� 	 �
�� � 	 �
 in
� 	 �
 � � 	��
 .

I hope it is clear that this definition is simply a formalisation of the linking proce-
dure described for the graphical notation in chapter 1. The treatment of the main
graph can be delegated to the primitive � operator on � process

�
es, so the only

thing to worry about here is the behaviour of the � constructor
�

and � destructor
�

symbols. The � constructor
�

symbols of the two programs � and
�

belong to the
same global namespace, and so are not renamed. Constructors even appear in the
labelled transition relation. In contrast, we want each program to have its own pri-
vate namespace for � destructor

�
symbols, and we achieve this by renaming them

to avoid capture.

I have chosen to use the same symbol � for linking as for constructing graphs.
There should be no risk of confusion, since one operates on � program

�
s and the

other on � process
�
es. Later I will prove (proposition 3.4.7) that the labelled transi-

tions of � � � can be derived from those of � and
�

. It turns out that � program
�
s

obey rules analogous to the PAR and COM rules that are used to derive the tran-
sitions of � process

�
es. Historically, I invented the rules for � program

�
s first, before

deciding how to represent their internal structure.

3.4. BASIC PROPERTIES 15

3.3.1. Canonical derivations. It is sometimes useful to be able to assume that
the IN rule is only used in a canonical way.

PROPOSITION 3.3.9. (Canonical inputs)

Any input transition � ��
 � � can be derived applying the IN rule only to � atom
�
s.

PROOF. Induction on the structure of � . The interesting case is when the tran-
sition is derived using the IN rule but � � � � � . Then � � � � 	�
��
 and � � fn

	 �

and

� �� fn
	 �
 and � � � � � � �
 � 	�
�
 � . By alpha-conversion, we may assume

fn
	 �
�� fn

		�
�� fn
	 �
 � � � . Then either � � fn

	��
 or � � fn
	��
 . Without loss of gener-

ality, suppose the former. By the IN rule,
� ����������� � �
 � � � �
 � 	�
�
 � , and by the inductive

hypothesis the transition can be derived applying the IN rule only to � atom
�
s.

Therefore, by the PAR � rule, so can
� � � ����������� � �
 � � ���
 � 	�
�
 � � � � 	 � � �
 � � �
 � 	�
�
 �

as required. �

3.4. Basic properties

I have now defined six largely separate concepts regarding MIN processes and
programs: free names, substitution, the structural congruence, the reaction rela-
tion, the labelled transition relation, and linking. Each of these is of independent
interest. In this section, I will add a seventh concept: the rearrangement relation,
which is of mainly technical interest. I will then make a start on the long list of
relationships between almost every pair of these seven concepts.

The following table may help you navigate the maths. It gives, for each pair of
concepts, the number of the principal result (or definition) that relates them.

 � ��
 ��
 �

Free names fn
	
 3.4.1 3.4.1 3.4.1 3.4.1 3.4.1 3.5.3

Substitution
 3.4.3 3.4.4 3.4.4 3.4.4 3.5.3
Linking � 3.4.6 3.4.6 3.4.7 3.5.4

Structural congruence (3.3.4) (3.3.5) 3.7.11 3.5.7
Reaction

��

3.7.12 3.5.8

Labelled transition ��
 3.5.17 3.5.16
Rearrangement

�
3.5.14

3.4.1. Behaviour of free names. There are several places in the definitions
where a side-condition depends on the free names of a process. In order to check
these side-conditions during proofs, it is necessary to be able to calculate the free
names of a program or process, starting only from its relationship with another
program or process. This subsection proves the relevant theorems.

Unlike non-linear calculi, such as the � -calculus, the free names of a MIN program
follow a very rigid discipline. For example, in the � -calculus, from the reaction
� ��
 � � it is only possible to deduce fn

	 �
�� fn
	 � �
 , whereas in MIN we have

the stronger condition fn
	 �
 � fn

	 � �
 . Though not particularly important, little
bonuses like this are one of the attractions of a linear calculus.

PROPOSITION 3.4.1. (Behaviour of free names)

16 3. MIN

(1) For any � process
� � , � name

�
s

� and � tree

�
s

� such that the substitution is defined,

fn
	 � �
� �

���
 � fn

	 �
 � fn
	 �
� �
� �
 .

(2) For any � program
�
s � and

�
, fn

	 � � �
 � fn
	 �
 � fn

	 �
 .
(3) If � �

then fn
	 �
 � fn

	 �
 .
(4) If � ��
 � � then fn

	 �
 � fn
	 � �
 .

(5) If � ��
 � � then fn
	 �
 � fn

	 �
 � fn
	 � �
 � � � .

PROOF. 1 can be proved by induction on the structure of � . 2 is immediate
from definitions 3.3.1 and 3.3.8. 3 can be proved by induction on the derivation
of � �

, using 1 to handle the BUF rule. 4 can be proved by induction on the
derivation of � ��
 � � , using 3 to handle the STRUCT rule. 5 can be proved by
induction on the derivation of � ��
 � � , using 1 to handle the IN rule. �

PROPOSITION 3.4.2. (Inputs and outputs use a channel)

If � ����������� � �
 � � or � ����������� � �
 � � then � � fn
	 �
 (so � �� fn

	 � �
) and

� � fn

	 � �
 (so

���� fn

	 �
).

PROOF. Induction on the derivation of the transition. �

3.4.2. Behaviour of substitution. Substitutions compose and commute nicely.

PROPOSITION 3.4.3. (Composition of substitutions)

Extend substitutions to � tree
�
s in the obvious way:
 	 �
 is � with every name � replaced

by
 	 �
 .
Given two substitutions
 � and
 � , define their composition
 by
 	 �
 �
 � 	
 � 	 �
�
 . Then
��
 �
 � � ��
 .

If fn
	 �
� �
� �
 � fn

	 �
� �
� �
 � � � then ���
���

��� �
� �

� � � ���
� �
� �

� �
� � � ���
� �

� ���
� �

��� .

PROOF. The second result follows from the first, which follows immediately
from definition 3.3.3. �

PROPOSITION 3.4.4. (Behaviour of substitution)

(1) If � �
then ��
 �
 .

(2) If � ��
 � � then ��
 ��
 � �
 .
(3) If � ��
 � � and
 	 �
 � � for all � � fn

	 �
 then ��
 ��
 � �
 .

PROOF. 1 can be proved by induction on the derivation of � �
, using propo-

sition 3.4.3 for the BUF rule. 2 can be proved by induction on the derivation of
� ��
 � � , using 1 for the STRUCT rule. 3 can be proved by induction on the deriva-
tion of � ��
 � � , using proposition 3.4.3 for the IN and REACT rules. �

The converses do not hold.

3.4. BASIC PROPERTIES 17

3.4.3. Behaviour of linking. I want to digress for one proposition to illustrate
the sense in which the � destructor

�
s of a program are private. The proposition

provides a way of alpha-converting � destructor
�
s. It is not needed much, but sym-

metry operations are almost always worth noting for their own sake. In particular,
note that � 	 �
 and � 	 � � �
 are quite unrelated destructors which can be indepen-
dently renamed, despite the fact that they are both called � , because they have
different arity.

PROPOSITION 3.4.5. (Change of destructors)

Given a sequence ��� � � � ���
��� of injections on � destructor
�
, define a function

� on � program

�
s.

The result

� 	 �
 is formed from � by replacing all occurrences of � 	 � � �
���
� � � �
 by � � 	 �
 	 � � ���
��� � � �
 .

This includes all occurrences in the � environment
�

as well as in the main graph.

Then, � ��
 � � iff

� 	 �
 ��

� 	 � �
 .

PROOF. An easy induction on the derivation of the transition. �

Now back to the main story. Linking behaves very similarly to the primitive �
operator on � process

�
es. In fact, the best viewpoint is that the primitive � operator

is the special case of linking in which the two programs to be linked have the same� environment
�
. It is a pity that the definition must be the other way around. The

results of this section patch up the difference.

PROPOSITION 3.4.6. (Behaviour of linking)

If � � � � and � � � � then � � � � � � � � � � .
If � ��
 � � then � � � ��
 � � � � and

� � � ��
 � � � � .

PROOF. Definition 3.3.8 immediately reduces both parts to corresponding state-
ments about � process

�
es. �

The converses do not hold. However, the next proposition holds in both directions.

PROPOSITION 3.4.7. (Labelled transitions of linked programs)

The labelled transition relation satisfies the following rules:

� ��
 � � fn
	 �
�� fn

	 �
 � � �
� � � ��
 � � � � PAR

� � �
��
 � � �

��
 � � � � � � � ��
 � �
� � � ��
 � � COM

� �
fn
	 �
�� fn

	 �
 � � � � ��
 ���
� � � ��
 � � � � PAR

�
�

�
��
 � � �

��
 � � � � � ��� ��
 � �
� � � ��
 � � COM

�
�

Furthermore, any labelled transition of � � � can be derived using these rules.

PROOF. An easy induction, similar to proposition 3.4.5, shows that adding
new � rewrite

�
s to a program’s � environment

�
does not affect its labelled transi-

tions, provided the � destructor
�
s mentioned in the new rules are not mentioned

anywhere in the original program. This result, along with proposition 3.4.5 and
definition 3.3.8, allow any derivation using the rules of this proposition to be con-
verted into one using the corresponding rules of definition 3.3.7, and vice versa. �

18 3. MIN

3.5. Rearrangements

If you tick off the results we have seen so far in the table at the start of section 3.4,
you will see that there are only three interesting ones left, all of which concern the
labelled transition relation. Unfortunately, we are not yet in a position to prove
them. The tool we require is the rearrangement relation, written

�
, and we have a

whole column of results about it to fill in before we can go any further.

3.5.1. Communication in MIN. The problem that the rearrangement relation
is designed to solve is the rather unusual form of the COM rules. Compare one of
the communication rules of CCS:

�
��
 � � �

��
 ���
� � � ��
 � � � � �

with MIN’s COM � rule:

�
��
 � � � ��
 � � � � � � � ��
 � �

� � � ��
 � � COM �

What is going on here? What is that third premise for? I will answer using two
examples. The first (figure [3H]) illustrates that the CCS rule is quite wrong for
MIN, by showing what it means graphically. In fact, it is arguably wrong for any
asynchronous calculus. The second (figure [3I]) shows an instance of a rather com-
plicated rule that does work, and which clearly must be derivable somehow.

The important points to note in figure [3I] are that a sequence of several transi-
tions of � and

�
individually go towards a single transition of � � � , and that the

conclusion need not be a silent transition. It should be clear that examples can be
concocted in which the sequences are arbitrarily long, and that the transitions of
� and

�
are complementary all the way along, apart from the very last transition

which becomes the conclusion.

The third premise allows the COM rules to be stacked into a list. Each item in
the list is a transition of � and a complementary transition of

�
. The list is termi-

nated with a transition derived in some other way, which contributes the action
for the conclusion. For example, the transition in figure [3I] can be derived like
this (distracting details are suppressed):

����� �� �
 ����� �� �

� ��� �� �
 � ��� �� �

� ��� �� �

	 � � � � 	
 �����
 � � � ��� �� �
 	 � � �
 � � PAR �

	 � ��� � �����
 � � � 	
 � � � � ��� �� �
 	 � � �
 � � COM �

	 � � 	
 � � � ��� � �����
 ��� � � � � � ��� �� �
 	 � � �
 � � COM �

3.5.2. Rearrangements. The purpose of the rearrangement relation is to rep-
resent just one of the steps in a stack of COM rules; that is, an output by one

3.5. REARRANGEMENTS 19

program and a complementary input by the other. The goal is to be able to derive
the communication in figure [3I] as follows:	 � � 	
 � � � � � � �����
 ��� � � � � � 	 � � � � �����
 � � � 	
 � � �

� 	 � � � � 	
 �����
 � �
� ��� �� �
 	 � � �
 � �

Each of the rearrangement steps is derived using a rule similar to the simple,
tractable one that is familiar from CCS. They are called rearrangements because
their effect on a � process

�
is only to turn it into another that constructs the same

graph. In fact, we will find (proposition 3.5.7) that rearrangements are a subrela-
tion of the structural congruence.

DEFINITION 3.5.1. (One-step transitions)

Let the one-step labelled transition relation, with elements written � ��
 � � � , be the
part of the labelled transition relation that can be derived without using the COM
rules.

DEFINITION 3.5.2. (Rearrangements)

Let the rearrangement relation, written
�
, be the smallest relation satisfying the fol-

lowing rules:

��� � � � �
��� � � � � � � � � PAR

� � ��� �
��
 ��� � ��� �

��
 � � �
��� � � � � � � � � � COM

� �
��� � � � �

��� � � � � � � � � PAR
�

�
��� �

��
 ��� � ��� �
��
 � � �

��� � � � � � � � � � COM
�

�

I will often omit ��� , and just write � � � � .
PROPOSITION 3.5.3. (Rearrangements respect free names and substitutions)

If � � � � then fn
	 �
 � fn

	 � �
 .
If � � � � then ��
 � � �
 .

PROOF. Simple inductions on the derivation of
�
, using propositions 3.4.1

and 3.4.4 for the base cases. �
PROPOSITION 3.5.4. (Rearrangements of linked programs)

The rearrangement relation satisfies the following rules:

� � � �
� � � � � � � �

�
��
 � � � � ��
 � � �
� � � � � � � � �

� � ���
� � � � � � � �

�
��
 � � � � ��
 � ���
� � � � � � � � �

Furthermore, any rearrangement of � � � can be derived using these rules.

PROOF. Reason as for proposition 3.4.7. �

20 3. MIN

3.5.3. Sound and complete. The following propositions relate rearrangements
to the COM rules of definition 3.3.7.

PROPOSITION 3.5.5. (Completeness of rearrangements)

��
 � �� ��
 �
PROOF. Induction on the derivation of ��
 . If it was derived using any rule

other than the PAR or COM rules, then let the derivation stand unchanged. If it
was derived using the PAR � rule (the PAR � rule is similar), apply the inductive
hypothesis to the premise, then use the PAR

� � rule several times and the PAR � rule
once. If � � � ��
 � �

was derived using the COM � rule (the COM � rule is similar)

from �
��
 � � and

� ��
 � �
and � � � � � ��
 � �

then apply the inductive hypothesis to

the first two premises to obtain � � � ��
 � � and
� � � ��
 � �

. Then use the PAR
�

rules several times then then the COM
� � rule to deduce � � � � � � � � � � � � � . Finally,

use the inductive hypothesis again to obtain � � � � � � � ��
 � �
. �

PROPOSITION 3.5.6. (Soundness of rearrangements)�� ��
 � ��

��

PROOF. In fact, if � � ��
 � � then either � ��
 � � or � ��
 � � � . This can be
proved by induction on the derivation of

�
. If it was derived using a COM

�

rule,
then it can be absorbed into the transition using the corresponding COM rule, to
obtain the first of the alternative conclusions. If it was derived using the PAR � rule
(the PAR � rule is similar) then � ��� � � and

� � � �
and

� � � � ��
 � � . Distinguish
cases according to the rule used to derive ��
 . If it was PAR � , then use the inductive
hypothesis. Similarly, if it was COM � (COM � is similar) then apply the inductive
hypothesis to the first premise, then use the COM � rule and, if necessary, the PAR

� �
rule. If it was PAR � , then

� ��
 � �
and � � � � � � � � , so use PAR � then PAR

� � to get� � � ��
 � � � � � � � � � � , that is, the second of the alternative conclusions.
Proposition 3.5.3 is needed to check the side-condition on the PAR � rule. �

Note that it is not true that
� ��
 � ��
 . This is because the rearrangement

could be in a part of the process that is distant from the part that performs the tran-
sition. This is an unavoidable consequence of separating out the rearrangements.
It turns out not to be a problem.

3.5.4. Structural congruence. The following proposition states that rearrang-
ing a textual program makes no difference to the graphical program it constructs.

PROPOSITION 3.5.7. (Rearrangements stay within structural congruence)

(1) If � ����������� � �
 � � � then � ��� � � � 	�
�
 � � � (in fact ��� � �
 � 	�
�
 � � � �).

(2) If � �������
���� � �
 � � � then � � � � � 	�
��
 � � � � .

(3) If � � � � then � � � .
PROOF. Easy inductions on the derivations of the transitions prove 1 and 2.

Induction on the derivation of
�

proves 3, using 1 and 2 for the base cases. �

3.5. REARRANGEMENTS 21

COROLLARY 3.5.8. (Rearrangements and reactions)

If � 	 � ���
 � ��
 	 � ���
 � � � then � ��
 � � .
The following simple consequences are a little off track, but will be useful later:

PROPOSITION 3.5.9. (Input and output form)

(1) If � ����������� � �
 � � then � � � � � � 	�
�
 � � � .
(2) If � ����������� � �
 � � then � � � � � 	�
�
 � � � � .
(3) If � � �

� � ��
 � � or � � �
� � ��
 � � then � � � � .

PROOF. 3 follows from 1 and 2, which follow from propositions 3.5.7 and 3.5.5.
�

3.5.5. One-step asynchrony. Because rearrangements are derived from one-
step inputs and outputs, many proofs by induction have as their base cases a
statement about one-step transitions. This subsection covers the principal ones.

PROPOSITION 3.5.10. (One-step asynchrony)

(1) If � is an input action (so � is an output) and fn
	 �
 � fn

	
�
 � � � then

�� � � ��
 � � ��
 � �� � �
��
 � ��
 � � ��
 � ��
 �
�
� � � ��
 � � ��
 � �� � �
��
 � ��
 � � ��
 � ��
 �

(2) If � �
�

���� �� � �
 � � � and � ����� �� �� � �
 � � � then
� � � and

�
� ��� �
� �
and � � �
� �

� � � � � .

(3) If �
��
 ��� � and �

��
 ��� � then � � � � � .
(4) If � � fn

	 �
 and

���� fn

	 �
 then � ����������� � �
 � ��� ���
 � 	�
�
 � .

PROOF. Each of the four parts of 1 can be proved by induction on the deriva-
tion of one of the transitions. If the two transitions were derived using the same
PAR rule, then use the inductive hypothesis. If they were derived using different
PAR rules, then the result follows immediately. This leaves a large number of base
cases to check. It is fortunate that in every case one of the transitions must be an
input. By proposition 3.5.7, input transitions are just substitutions, so we can use
proposition 3.4.4.

2 can be proved by induction on one of the transitions. The crucial point is that
both transitions occur on the channel � . By proposition 3.4.2, this greatly con-
strains the derivations. In fact, they must both be derived using the same rules.

3 is a restatement of part of proposition 3.5.7, and 4 is a restatement of the IN rule.
They are included here only for completeness. �

For the purposes of asynchrony, rearrangements behave rather like silent transi-
tions.

22 3. MIN

PROPOSITION 3.5.11. (Rearrangement asynchrony)

If � is an input action (so � is an output), then
� ��
 � � ��
 � �
��
 � � � � ��
 �
� ��
 � � ��
 � �

PROOF. Each part can be proved by induction on the derivation of the re-
arrangement. We may assume that the transition was not derived using the IN
rule, by proposition 3.3.9. If the rearrangement was derived using a COM rule, we
use proposition 3.5.10. If it was derived using the same PAR rule as the transition,
we use the inductive hypothesis. If they were derived using opposite PAR rules,
the result is immediate. �

3.5.6. Confluence. Rearrangements are partial communications that gradu-
ally move a message towards its unique destination. With this intuition, it is a bit
of a shock to find that they are not confluent. The problematic case is when two
messages approach each other from opposite ends of a chain of wires, as shown in
figure [3J]. When they meet, they block each other’s progress, and there are several
places in which they might meet. This can only occur in badly-typed programs,
but I will nevertheless take this case seriously.

The good news is that the non-confluent rearrangements are not needed for de-
riving labelled transitions. We can identify a pointless subset of the rearrangement
relation which can be delayed with respect to one-step transitions and other rear-
rangements, except other pointless ones.

DEFINITION 3.5.12. (Pointless inputs and rearrangments)

Let the pointless input relation, with elements written �
��
�� � � for programs �

and � � and input action � , be the subset of the one-step (input) labelled transition
relation that can be derived using the following rules:

� � � � 	�
�
 � ��
 ��� �
� � � � 	�
�
 � ��
 � � �

IN
� � �

��
�� � � fn
	
�
 � fn

	 �
 � � �
� � �

��
 � � � � �
PAR

� �

� � 	�
�
 � � � ��
 ��� �
� � 	�
�
 � � � ��
 � � � IN

� � fn
	 �
 � fn

	
�
 � � � � ��
�� � �

� � �
��
 � � � � �

PAR
� �

Let the pointless rearrangement relation, written
� �

, be the subset of the rearrange-
ment relation that can be derived from pointless inputs.

This is not the only class of pointless rearrangements that can be identified, but it
is all we will need.

PROPOSITION 3.5.13. (Pointless rearrangements)

If �
��
 � � � ����������� � �
 � � � and � � fn

	
�
 then � � ����������� � �
 � � � � .

3.5. REARRANGEMENTS 23

If fn
	
�
�� fn

	 �
 � � � , then
��
 � ��
 � � ��
 � ��
 �
��
 � � � � ��
 �
�
� ��
 � � ��
 � � �
�
�
� � � �

�

PROOF. The fifth part depends on the third and fourth which both depend on
the second. The fifth part also depends on the first part, and on propositions 3.5.10
and 3.5.11 The fourth part also uses proposition 3.5.10. All parts can be proved
by induction on either of the derivations. There are

��������������� � � � � �
cases to check, of which most are easy. Symmetry lightens the load to 21 cases.
Furthermore, there are patterns. Whenever the two premises were derived using
the same PAR rule (5 cases), we use the inductive hypothesis, and whenever they
were derived using opposite PAR rules (4 cases) the result is immediate. I will
present just the four that depend on other propositions.

For the fourth part, suppose � � � � � � � � � � was derived using COM � from

�
��
 � � � and

� ��
 � � �
, and that � � � � � ��
 � � � � � � � was derived using PAR � from

� � ��
 � � � � and fn
	 �
 � fn

	 � �
 � � � . We may assume by alpha-conversion that

fn
	
�
 � fn

	 �
 � � � . By proposition 3.5.10, � ��
 � ��
 � � � � . Therefore by PAR � and
COM � � � � ��
 � � � � � � � � � as required.

For the fifth part, suppose � � � � � � � � � � was derived using COM � from �
��
 � � �

and
� ��
�� � � �

and that � � � � � � � � � � � � was derived using PAR � from � � � � � � .
Then by proposition 3.5.11 � �

��
 � � � � and hence � � � � � � � � � � � � as required.

For the fifth part, suppose � � � � � � � � � � was derived using COM � from �
��
 � � �

and
� ��
�� � � �

and that � � � � � � � � � � � � � was derived also using COM � from

� � ����������� � �
 � � � � and
� � ����������� � �
 � � � � . We have some freedom in choosing the names: we

may assume that

� �� fn

	
�
 . However, we must consider � � fn

	
�
 and � �� fn

	
�

separately. In the former case, we can apply part 1 to get
� � ����������� � �
�� � � �

and hence
� � � � � � � � � � � � � � as required. In the latter case fn

	
�
�� fn

	 ��� 	�
��
�
 � � � , so we can

apply proposition 3.5.10 to the outputs and part 2 to the inputs to get � �������� �� � �
 � ��
 � � �
and

� ����������� � �
 � ��
�� � � � , and hence � � � � � � � � � � � � � as required.

For the fifth part, suppose � � � � � � � � � � was derived using COM � from �
��
 ��� �

and
� ��
�� � � �

and that � � � � � � � � � � � � � was derived using COM � from � � ����������� � �
 �
� � � and

� � ����������� � �
 � � � � . We may assume

� �� fn

	
�
 but an inner induction on the

derivation of
��
 � �������

���� � �
 � is necessary to show that � �� fn
	
�
 . Now we can use

proposition 3.5.10 to obtain � �������
���� � �
 � ��
 � � � � and part 2 to obtain

� �������
� �� � �
 � ��
�� � � � ,

and hence � � � � � � � � � � � � � as required. �

24 3. MIN

PROPOSITION 3.5.14. (Confluence)

If ��� � � � � � then either ��� � � � � � � � or ��� � � � � or � � � � � .
PROOF. Induction on the derivation of one of the rearrangements. If they were

derived using the same PAR rule, use the inductive hypothesis. If they were de-
rived using opposite PAR rules, the second conclusion is immediate. If one was
derived using a COM rule and the other using a PAR rule, then part 3 of propo-
sition 3.5.11 gives the second conclusion. This leaves the cases in which they are
both derived using COM rules.

If the two rearrangements were both derived using COM � (the case in which they
are both derived using COM � is similar) then � � � � � and ��� � � � � � � and

� � � � � � � � and
� � ����������� � � � � � � � � �� �� � �
 � � � and

� � ����������� � � � � ��� � � �� �� � �
 � � � . If

 �� �

then by alpha-conversion we may assume that all the names are different, and so
part 1 of proposition 3.5.10 gives the second conclusion. If

 � � then part 2 of
proposition 3.5.10 gives

� � � � � �
�
� � � � , the third conclusion.

If
� � � � � �

� � � was derived using COM � and
� � � � � � � � � was derived

using COM � then
� � ����������� � � � � ��� � � �� �� � �
 � � � and

� � ����������� � � � � � � � � �� �� � �
 � � � . Again, if
 �� � then we may assume that all the names are different, and so part 1 of
proposition 3.5.10 gives the second conclusion. If

 � � , the reader may by now
have guessed by elimination that we are heading for the first conclusion, that the
two input transitions are pointless.

What is required is the following result: If
� � ����������� � � � � � �

�

� �� �� � �
 � � � then
� �
�

� �� �� � �
�� � � .
This can be proved by induction on the derivation of one of the transitions. If
either is derived using a PAR rule, then the other must be derived using the same
PAR rule (we may neglect the IN rule by proposition 3.3.9), so use the inductive
hypothesis. This leaves the case in which the output is derived using an OUT rule,
which constrains the form of

�
enough to show that the input is pointless. �

DEFINITION 3.5.15. (Rearrangements equivalence)

Let the rearrangement equivalence relation, written
� � , be the smallest equivalence

containing the rearrangement relation.

PROPOSITION 3.5.16. (Rearrangement equivalence is a strong bisimulation)

�
� ��
 � ��
 � �

PROOF. The result follows by induction on the derivation of
� � from

� ��
 � ��
 � �
(proposition 3.5.6) and � ��
 � ��
 � � . The latter follows (by proposition 3.5.5) from
� � � ��
 � � ��
 � � , which follows (by proposition 3.5.6) from � � � ��
 � � � � ��
 � � � .
This we will prove by induction on the number of

�
steps.

The base case, � ��
 � � ��
 � � , is part 3 of proposition 3.5.11. The inductive hy-
pothesis is that if � � � � ��� � � ��
 � � � then either � � � � � ��
 � � � � � or � � � � � ��
 � � �
or � � � ��
 � � � . This follows from proposition 3.5.14 and in the first case
 � �
applications of proposition 3.5.13. �

3.5. REARRANGEMENTS 25

3.5.7. Asynchrony. Selinger’s asynchrony conditions characterise a class of
asynchronous communication. More precisely, a labelled transition system be-
longs to the class if it is weakly bisimilar to one satisfying the conditions. Selinger
worked out the conditions for CCS-like calculi, and they need to be generalised in
order to include channel passing. I presented this generalisation in chapter 2.

We have already seen, in propositions 3.5.10 and 3.5.11, that the one-step labelled
transition relation satisfies the asynchrony conditions if we think of rearrange-
ments as silent transitions. The fit is very tight: not only is it weakly bisimilar
to one satisfying the conditions, it actually satisfies them itself. However, both the
one-step labelled transition system and the rearrangement relation are fictions that
don’t make much sense in the graphical notation.

In this section, I will show that the full labelled transition system satisfies the asyn-
chrony conditions up to

� � . Proposition 3.5.16 assures us that this is sufficient to
call MIN asynchronous. Furthermore, we know by part 3 of proposition 3.5.7 that� � only relates textual programs that construct the same graphical program, so in
the graphical notation the labelled transition system is once again satisfied up to�

.

THEOREM 3.5.17. (Asynchrony)

(1) If � is an input action (so � is an output) and fn
	 �
 � fn

	
�
 � � � then

�� �
��
 � ��
 � � �� �

��

��
 � ��
 ��
 � �

�
� � ��
 � ��
 � �

�
� �

��
 ��
 � ��

��
 � �

(2) If � �
�

���� �� � �
 ��� and � ����� �� �� � �
 � � then
� � � and

�
� � � �
� �
and �����
� �

� � � � � � .

(3) If �
��
 � � and �

��
 � � then � � � � � � .
(4) If � � fn

	 �
 and

���� fn

	 �
 then � ����������� � �
 ��� ���
 � 	�
�
 � .

PROOF. For 1, reason as follows using propositions 3.5.5, 3.5.6, 3.5.10, 3.5.11
and 3.5.14 (the third and fourth parts are similar to the first and second respec-
tively):

�� �
��
 � �� � � �� �� ��
 �

� �
� � �� � � �� �� ��
 � �� �

� �
�
�

�� �� � � ��
 � �� �� �
� � � ��
 � �� � � � �
� ��
 � � �� �

��

��
 � �� ��
 � �� ��
 �

� �� ��
 � ��
 � ��
� �� ��
 � ��
 � ��
� ��
 ��

��

26 3. MIN

For 2, start in the same way as for part 1 of 1:

����������� � � � �
�

� �� �� � �
 � ����������� � � � � �� �� � � � �� �� � �
 �
� �

� � �������� �� � � � � �� �� �
�

� �� �� � �
 � �� �
� �

� �

�� ����������� � � � � � � � �� �� � �
 � �� �� �
then use part 2 of proposition 3.5.10. The same approach works for 3. Since any
one-step labelled transition is also a labelled transition, part 4 follows immediately
from part 4 of proposition 3.5.10. �

3.6. Congruence results

In most of the process calculus literature, a congruence result is pretty much the
last theorem proved. However, in at least one case (Milner’s book on CCS [1]) the
congruence result doesn’t actually depend on the previous result, that the struc-
tural congruence is a strong bisimulation. They could have appeared in either
order. In my attempts to prove the latter result for MIN, I have not been able to
avoid a dependence on the former, so unusually the congruence result comes first,
here.

In English, the result states that if two programs are equivalent, then they remain
so after linking each with a third. This is one of the principal pillars supporting the
main theorem of this chapter. For this purpose, linking is the only operation for
which a congruence result is important. Congruence with respect to other opera-
tions is interesting from a pragmatic point of view, as a way of proving programs
equivalent, and from a theoretical point of view, as a way of comparing MIN with
other process calculi, but for the moment such considerations are off-topic.

We are interested in several different equivalences and pre-orders. These include
strong and weak bisimilarity, weak similarity and mutual weak similarity, and
coupled similarity and mutual coupled similarity (all labelled not barbed). Even in
CCS we famously find that one plausibly defined equivalence (weak bisimilarity)
is not a congruence with respect to all the operations (unguarded sum), and in
more complicated calculi such as the � -calculus, the array of equivalences that
are and are not congruences is intimidating. It is rather pleasant, therefore, to
discover that all of the important equivalences and pre-orders on MIN programs
are context-closed.

We do not have to check every relation separately. Instead, I will prove the sound-
ness of a technique for constructing context-closed simulations. By applying this
technique to the largest simulation (of a given kind), we will immediately obtain a
context-closed version of it. Since the context-closed version can be no larger than
the largest, this implies that the largest is context-closed. All the hard work goes
into the proof technique, and is thereby shared. Moreover, the proof technique is
independently useful.

In fact, we need to consider two cases: strong and weak simulations must be con-
sidered separately. The spirit of the two cases is the same, though.

3.6. CONGRUENCE RESULTS 27

3.6.1. Strong simulations. Recall from chapter 2 the following definitions:

DEFINITION 3.6.1. (Strong simulations)

Say a well-formed relation
�

is a strong simulation iff whenever � � �
and� ��
 ��� we find some � � such that � ��
 � � and � � � ��� .

Say
�

is a strong bisimulation iff it is symmetric and a strong simulation.3

Let strong bisimilarity, written � , be the largest strong bisimulation.

The output of the proof technique is a strong bisimulation. The input must obey
the following definition:

DEFINITION 3.6.2. (Strong simulation up to linking)

Given a well-formed relation
�

, define
��

to be the smallest relation containing
�

and satisfying the following axiom:

� � �� � � � �
�� � �

� � � � � �� � � � � �
Say

�
is a strong simulation up to linking iff whenever � � �

and
� ��
 ��� we find

some � � such that � ��
 � � and � �
�� ���

.

Strong simulations up to linking are easier to find than ordinary strong simulations
on account of the hat on the final

��
. In fact, any strong simulation is trivially a

strong simulation up to linking. To make it even easier, we can with impunity add
some more axioms to the definition of

��
:

�
�� � �

�
�� � �

�� �
 � � name
�
 � name

�
�
 �� �

���
��
�
�

�
�� �

In the third, � can be replaced by any smaller strong simulation, such as
� �

. I will
leave the reader to verify that none of these additions makes any difference to the
soundness of the technique, proved next.

PROPOSITION 3.6.3. (Strong simulation up to linking)

If
�

is a strong simulation up to linking, then
��

is a strong simulation.

PROOF. We need to show that if �
�� �

and
� ��
 � �

then � ��
 � � and
� �
�� � �

. Proceed by induction on the derivation of the transition. If � � �
the

result is immediate. Otherwise, � � � � � � � and
� � � � � � � and � � �� � � and

� �
�� � � . Distinguish cases according to the derivation of

� � � � � ��
 � �
. We

may neglect the IN rule by proposition 3.3.9.

If
� � � � � ��
 � � was derived using the PAR

� � rule (the PAR
�
� rule is similar) then� � ��
 ��� � and fn

	 �
	� fn
	 � �
 � � � and

��� � ��� � � � � . By the inductive hypothesis,
� � ��
 � �� and � �� �� ��� � . By the PAR

� � rule, � � � � � ��
 � �� � � � . Finally, � � �
� �
�� ��� � � � � as required.

3The conventional definition is that both
�

and its inverse must be strong simulations. Then their
union is a bisimulation by my definition.

28 3. MIN

If
� � � � � ��
 ��� was derived using the COM

� � rule (the COM
�
� rule is similar) then

� � ��
 � � � and
� � ��
 ���

� and
� � � � ���� ��
 ��� . Applying the inductive hypothesis to

the first two premises, we deduce that ��� ��
 � �� and
� � ��
 � � � and � �� � � �� �� ��� � ����

� . Applying the inductive hypothesis again to the third premise, we deduce
� �� � � �� ��
 � � and � �

�� � �
as required. �

COROLLARY 3.6.4. (Strong bisimilarity is a congruence)

� is a strong simulation, hence a strong simulation up to linking, so
�
� is a strong sim-

ulation. It is also symmetric, hence a strong bisimulation, so
�
�

�
� . Since �

� �
� by

definition, we have �
� �
� . In other words, � is a congruence.

3.6.2. Weak simulations. Recall the following definitions from chapter 2:

DEFINITION 3.6.5. (Weak simulations)

Say a well-formed relation
�

is a weak simulation iff:

� Whenever � � �
and

� ��
 � �
, we find some � � such that � ��
 � � � and

� ��� ��� .� Whenever � � �
and

� ��
 ��� with � �� � , we find some � � such that
� ��
 � ��
 ��
 � � � and � ��� ��� .

Let weak similarity, written � , be the largest weak simulation, and let mutual weak
similarity, written � , be its largest symmetric subrelation.

Say
�

is a weak bisimulation iff it is symmetric and a weak simulation.4

Let weak bisimilarity, written � , be the largest weak bisimulation.

Say
�

is coupled if
� � ��
 � � � � . Say it is a coupled simulation if it is also a weak

simulation.5

Let coupled similarity, written � � , be the largest coupled simulation, and let mutual
coupled similarity, written � � , be its largest symmetric subrelation.

There are many other interesting equivalences, but no more are used in this thesis.
According to the definition of MIN, � � � � means that

�
is a valid implementa-

tion of � . Weak bisimilarity is interesting mainly because it is easier to construct
weak bisimulations (when they exist) than coupled simulations. Similarity is not
particularly interesting, but its properties fall out of the maths for free.

DEFINITION 3.6.6. (Weak simulation up to linking)

Given a relation
�

, define
��

to be the smallest relation containing
�

and satisfying
the following axioms:

� � �� � � � �
�� � �

� � � � � �� � � � � �
���
��
�
�

�
�� �

Say
�

is a weak simulation up to linking iff:

4Again, the conventional definition is that both
�

and its inverse must be weak simulations.
5The conventional definition of a coupled simulation is a pair of weak simulations

���
and
��� � �

such that
��� 	�
� ��
 ��� and

��� 	 ���
� ��
 . Then
��� � ��� � � is a coupled simulation by my definition.

3.6. CONGRUENCE RESULTS 29

� Whenever � � �
and

� ��
 ���
, we find a � � such that � ��
 � � � and

� �
�� � �

.� Whenever � � �
and

� ��
 ���
with � �� � , we find a � � such that

� ��
 � ��
 ��
 � � � and � �
�� ���

.

We can with impunity add the following extra axioms:

�
�� �

�
�� �
 � � name

�
 � name
�

�
 �� �

but the transitivity axiom is unsound.

Because the COM rules deal only with strong transitions, we need a lemma to
replace them.

LEMMA 3.6.7. (Weak COM rules)

Suppose � ��
 � ��
 ��
 � � � and
� ��
 � ��
 ��
 � ���

, or the same with � and � exchanged.

� If � � � ��� ��

�
��
 ��
 � � � then � � � ��
 � ��
 ��
 � � � � � .� If � � � ��� ��

�
� � then � � � ��
 � � � � � .

In fact, in the first case � � � ��
 � ��
 ��
 � � � , and in the second case there will be at
most one

�
step, but we don’t need this stronger result.

PROOF. First let me introduce some more variables for some of the intermedi-
ate states: � ��
 � � � ��
 � � ��
 � � � and

� ��
 � � � ��
 � � ��
 � ���
. Now by the PAR

rules, � � � ��
 � ��
 � � � � � � . By the COM
� � rule, � � � � � � � � � � � . By the PAR

rules, � � � � � ��

� ��
 � � � � ��� . In summary, � � � ��
 � � ��
 � ��
 � � . The result then

follows from proposition 3.5.6. �

PROPOSITION 3.6.8. (Weak simulation up to linking)

If
�

is a weak simulation up to linking, then
��

is a weak simulation.

PROOF. Similar to that of proposition 3.6.3, but using lemma 3.6.7 in place of
the COM rules, and using the second axiom of definition 3.6.6 to absorb the extra�

steps. �

THEOREM 3.6.9. (Congruence results)

Each of � , � , � , � , � � and � � is context-closed.

PROOF. � is a congruence by corollary 3.6.4. Similar reasoning, but using the
weak version of simulation up to linking, nets the others. �

30 3. MIN

3.7. Structural congruence

We now have everything necessary to fill in the second last hole in the table at the
start of section 3.4, namely that is a strong bisimulation. The last, namely that��

and
��
 coincide, will follow quickly after that.

Since we know that
�

is a strong bisimulation, that strong bisimulations are sym-
metric, that the composition of two strong bisimulations is a strong bisimulation,
it suffices to find, for each of the axioms of definition 3.3.4, a strong bisimulation
up to linking containing the relation generated by it alone. Each of the first two ax-
ioms in fact defines a strong bisimulation, just like in CCS. The STAR � rule defines
a strong bisimulation up to

�
� , and the WIRE rule defines a strong bisimulation up

to linking. The BUF rule, however, is remarkably awkward. We not only need to
work up to

� � and up to linking, but also up to the other four strong bisimulations.

We can easily handle all the input transitions. This reduces the number of cases
we have to consider later, so it’s worth doing straight away.

PROPOSITION 3.7.1. (Input transitions and the structural congruence)

Suppose � �
, and that � is an input transition. Then �

��
 � �
iff
� ��
 � �

.

PROOF. The existence of a matching transition follows from the last part of
theorem 3.5.17. The form of the resulting program is then constrained by proposi-
tion 3.5.9. �

3.7.1. The easy rules.

PROPOSITION 3.7.2. (STAR
�

and STAR � define strong bisimulations)

(1) If � ��
 � � then � � � ��
 � � and vice versa.
(2) If � � � ��
 � �

then
� � � � � � � � and

� � � ��
 � � � � � .
PROOF. For the forwards direction of 1, use the PAR � rule. For the backwards

direction, observe that only the PAR � rule is possible. For 2, perform a case analy-
sis on the derivation of the transition (no induction is required). �
PROPOSITION 3.7.3. (STAR � defines a strong bisimulation up to

� �)
If � � 	�� � �
 ��
 � � then � � � � � � 	�� � � � �
 and

	 � � �
 � � ��
 � � 	 � � � � �
 � � � .
A symmetric result holds of

	 � � �
 � � .
PROOF. In fact two stronger propositions hold:

(1) If � � 	�� � �
 � � � then � � � � � � 	 � � � � �
 and
	 � � �
 � � � 	 � � � � �
 � � � .

(2) If � � 	�� � �
 ��
 ��� � then � � � � � � 	 � � � � �
 and
	 ��� �
 � � ��
 � 	 � � � � �
 � � � .

Each of these can be proved by case analysis on the derivation of the transition (no
induction is required). The result then follows from propositions 3.5.5 and 3.5.6.
A symmetric argument yields the symmetric result. �
PROPOSITION 3.7.4. (WIRE defines a strong bisimulation up to linking)

If ��� ����� ��
 � � then � � � �
� � �
� � � and � ��� � � ��
 �
� � �
� � � .

3.7. STRUCTURAL CONGRUENCE 31

PROOF. Case analysis on the derivation of the transition. �
DEFINITION 3.7.5. (��)

Let � be the smallest congruence satisfying the STAR
�
, STAR � , STAR � and WIRE

rules of definition 3.3.4 and containing
�
� .

PROPOSITION 3.7.6. (� is a strong bisimulation)

 �� ��
 � ��
 ��
PROOF. Immediate from propositions 3.7.2, 3.7.3 and 3.7.4. �

3.7.2. The BUF rule. One of the things that makes the BUF rule awkward
is that it is quite different forwards from backwards. We must consider the two
directions separately. One of the directions is rather easier than the other, and I’ll
do that first.

LEMMA 3.7.7. (base case of proposition 3.7.8)

If fn
	 �
�� fn

	 � � � � �
 � ��� � and � is a � name
�

and ��� � �
 � � ��
 � �
then � � � � � � � ��
 � �

.

PROOF. We may assume by alpha-conversion that � �� fn
	 �
 , but we must

distinguish two cases according to whether � � fn
	 �
 . If � �� fn

	 �
 , then by
proposition 3.4.4 we have � ��
 � � and

� � � � � � � �
 � � , so by the PAR � rule
� � � � � � � ��
 � � ��� � � � � � � � � �
 � � as required. If � � fn

	 �
 then either � is an
input or (using proposition 3.4.2) � � � � 	�
�
 for some

� �� fn
	 � � ���
 � �
 (so

� �� fn
	 �

too). Therefore, choosing fresh

, � ����� �� �� � � �
 � � and � � � � � ����� �� �� � � �
 � ��� �� �� � �
 �

 �
� �

. Apply
the PAR � and COM � rules. �
PROPOSITION 3.7.8. (BUF rule backwards)

If fn
	 �
�� fn

	 � � � � �
 � ��� � and ��� ���
 ��� ��
 � �
then � ��� � � � � ��
 � �

.

PROOF. Induction on the structure of � . If � is a � name
�
, use lemma 3.7.7.

Otherwise � � � 	�
�
 . Choosing fresh

� and putting
 � �
� � � �
� �

, we have

� � ���
 � 	�
�
 � � ��� � �
 � 	�
�
 � � � � �
 � � � �
��� � � � �
 � � �
� ��� � � � 	�
�
 � � ��� � �
 � 	�
�
 � � �
� �
� �

 � 		�
����	 ��� � �
 � 	�
�
 � ��� � � ��� � �
 �
���
 ��� � � ��� � �
Applying the inductive hypothesis to

��� ���
 � 	�
�
 � � � � �
 � � � ���
� � � ���
 � �	� ��
 � �

we obtain 	 ��� ���
 � 	�
�
 � � � � � ��� � �
 � � � �
 � � � ���
� � � � � � �
 � � � � �� ��� ���
 � 	�
�
 ��� � � �
 � � � ����� � � � � � �
 � � � � � � � � � ��� � �
��
 � �

Repeating this step a total of
 times gives the desired result. �

Now for the forwards direction.

32 3. MIN

LEMMA 3.7.9. (Base case of BUF rule forwards)

If fn
	 �
�� fn

	 � � 	�
�
 � � �
 � fn
	 � 	�
�
�
 and � ��� � 	�
�
 � � � ��
 � �

and � is not an input action
then one of the following holds:

� � ��
 � � and fn
	 �
 � fn

	 � � 	�
�
 � � �
 � � � and � � � � � 	�
�
 � � � � � � � .� � �

, a � name

�
, and � �
 � 	�
�
 and � ���
� �
� � � � � � .

PROOF. Induction on the derivation of the transition. If it was derived using
PAR � then the first conclusion holds. If it was derived using PAR � then the second

holds. COM � is not possible. If it was derived using COM � then �
��
 � � and

� � 	�
�
 � � � ��
 � � 	�
� �
 � � � and � � � � � 	�
� �
 � � � ��
 � �
. Apply the inductive hypothesis to

the latter. If it returns the second conclusion, then return the second conclusion.
If it returns the first, then ��� ��
 � � � and � � � ��� � 	�
� �
 � � � � � � � . Use theorem 3.5.17 to

deduce � ��
 � �
��
 � � � � � , then COM

� � to deduce � � ��� � 	�
�
 � � � � � � � � � � � � 	�
� �
 � � � as
required. �

COROLLARY. If fn
	 �
�� fn

	 � � � � �
 � ��� � and � ����������� � �
 � � and � � � � � 	�
�
 � � � ��
 � �
and �

is not an input action, then one of the following holds:

� � ��
 � � � and fn
	 �
�� fn

	 � � � � �
 � � � and � � � ��� � � � � � � � � (again, this requires
theorem 3.5.17).� � �

, a � name
�
, and � �
 � 	�
�
 and � � � �
� �
��� � � � � .

PROPOSITION 3.7.10. (BUF rule forwards)

If fn
	 �
�� fn

	 � � � � �
 � � � and � � � � � � � ��
 � �
then ��� � �
 ��� ��
 � �

.

PROOF. Proposition 3.7.1 leaves the cases in which � is not an input action.
Reason by induction on the structure of � . Distinguish cases according to the
derivation of ��� � � � � � ��
 � �

. If it was derived using PAR � , then the result is imme-
diate. PAR � is not possible. If it was derived using COM � then use lemma 3.7.9.

This leaves the COM � case, in which � � � 	�
�
 and � �������
���� � �
 � � (from which ��� ���

� 	�
�
 � � � � �) and � � ���
� �
��� ��
 � �
. Also, � � � �
 ��� � � � � �
 � 	�
�
 ���
� �

� � . This puts

us on territory familiar from proposition 3.7.8, and we can finish the proof in the
same way. �

3.7.3. Structural congruence is a strong bisimulation.

THEOREM 3.7.11. (Structural congruence is a strong bisimulation)

 ��
 � ��

PROOF. Since is the smallest congruence containing � and satisfying the

BUF rule of definition 3.3.4, it suffices to show that the smallest equivalence con-
taining �� and satisfying the BUF rule is a strong bisimulation up to linking. This
follows from propositions 3.7.6, 3.7.8 and 3.7.10. �

3.8. THE MAIN THEOREM 33

3.7.4. Reactions and silent transitions. We can now prove the assertion made
way back in section 3.1.2, namely that the reaction relation agrees with the silent
transition relation up to structural congruence. This will fill in the final hole in the
table at the start of section 3.4. It is also an important pillar supporting the main
theorem of this chapter.

THEOREM 3.7.12. (Reactions and silent transitions)

(1) If � ��
 � � then � ��
 � � .
(2) If � ��
 � � then � ��
 � � .

PROOF. Prove 1 by induction on the derivation of � ��
 � � . The REACT and
PAR rules of definition 3.3.5 map respectively onto the REACT and PAR � rules of
definition 3.3.7, and (at last!) we can handle the STRUCT rule using theorem 3.7.11.

For 2, use propositions 3.5.5 and 3.5.7 to deduce � ��
 � � � , and then show by
induction on its derivation that

��
 � � ��

. Finally, use the STRUCT rule. �

We should also check that the definition of the labelled transition relation given in
chapter 1, and repeated in section 3.1.2, agrees with definition 3.3.7. After all, they
do not look the same at all. The former implicitly uses the structural congruence,
while the latter is inductive on a construction of the graph. All the hard work is
contained in theorem 3.7.11; we just have to finish it off.

PROPOSITION 3.7.13. (Alternative definition of the labelled transition relation)

(1) � ��
 � � iff � ��
 � � .
(2) � �������� �� � �
 � � iff � � fn

	 �
 and

� � fn

	 � �
 and � � � � � � 	�
��
 � � � .
(3) � �������� �� � �
 � � iff � � fn

	 �
 and

� � fn

	 � �
 and � � � � � 	�
�
 � � � � .
PROOF. 1 is simply a restatement of theorem 3.7.12. The ‘only if’ parts of 2

and 3 are simply a restatement of propositions 3.4.2 and 3.5.9. For the ‘if’ part of

2, derive � ����������� � �
 � � � � � � 	�
��
 � using the IN rule. For the ‘if’ part of 3, derive

� � � � 	�
�
 � � � � �������� �� � �
 � � using OUT � and PAR � , and then apply theorem 3.7.11. �

We will never need this proposition; we can always derive any transitions we want
using definition 3.3.7. It is nice to know that it is true, though.

3.8. The main theorem

We now know a great deal about the labelled equivalences. We have two equiva-
lent definitions of the labelled transition relation, and we can switch between them
at will. One of those definitions provides an easy way of enumerating the transi-
tions of a program exhaustively. The other provides a simple characterisation of
the effect of a transition on a program. We know that all the interesting labelled
equivalences are congruences. We have good ways of proving that programs are
equivalent (construct a simulation) or are not equivalent (find a context in which
they do not have the same transitions). The former task is undecidable in gen-
eral, but we are beginning to see some powerful tools for achieving it in practice
(simulation ‘up to’ various things).

34 3. MIN

Apart from studying my provisional type scheme in chapter 4, this is as far as
I am going to push the side of the theory that concerns the labelled transition
system. We are close to the frontier of what is known for any calculus, and we
have not taken very long to get there. What lies beyond is to some extent calculus-
independent. This includes proof techniques such as simulation up to expansion,
and the fascinating study of ‘up to’ techniques in general [2, section 2.4]. There
are also techniques that will require some foundational results before they can be
applied to MIN, but which will then work just as they do for other calculi. These
include the expansion law6 and the unique solution theorem (same reference). I
feel that there is a pressing need to automate the whole lot in the form of a program
that can be used by non-specialists [ref: Concurrency Workbench].

The remaining job for this chapter is to establish that knowing about labelled
equivalences is of any use. We have to show that labelled coupled similarity coin-
cides with barbed coupled similarity, the relation used in the definition of MIN.

3.8.1. Barbed coupled similarity. Recall the definition of barbed coupled sim-
ilarity (this version is untyped):

DEFINITION 3.8.1. (Barbed coupled similarity)

Let � constructor
� �

be larger than � constructor
�

by one element: ‘test’.7 Keeping
� destructor

�
and � name

�
unchanged, derive � tree

� �
, � atom

� �
, � process

� �
, � rewrite

� �
,

� environment
� �

and � program
� �

by substituting � constructor
� �

for � constructor
�

ev-
erywhere in definition 3.3.1. Extend fn

	
 , ,
��

and the labelled transition rela-
tion accordingly. Do not extend the labelled equivalences, such as � and � � .

Say a well-formed relation
�

on � program
� �

is sound unless it relates two programs
let � in � and let � in

�
such that � contains ‘test’ but

�
does not, or vice versa.

Say
�

is reduction-closed if
� ��
�� � ��
�� �

.

Say
�

is context-closed if � � � � � � � and � � � � � � � whenever � � � .

Say
�

is coupled iff
� � ��
�� � � � .

Say
�

is a barbed coupled simulation iff it is sound, reduction-closed, context-closed
and coupled. Let barbed coupled similarity, written � � , be the restriction to � program

�
of the largest barbed coupled simulation, and let mutual barbed coupled similarity,
written

� � , be its largest symmetric subrelation.

It is easy to see that each of the four properties is true of , and is closed under
unions and under the operation that maps

�
and

�
to
� � � � �

. The largest barbed
coupled simulation therefore exists, contains , and is reflexive and transitive.

To show that � � and � � coincide, we must find a (labelled) coupled simulation
containing � � and a barbed coupled simulation containing � � . The proofs are not
hard, but they use nearly every trick we have met, jumping between reactions and

6There are two different uses of the word ‘expansion’ in this paragraph, and more widely in the
process calculus literature.

7I considered calling the new constructor ‘twdfldsapstiiti’ for ‘thing with dazzling flashing lights,
deafening siren and putrid stench, that is impossible to ignore’, as this more accurately describes the
way in which it is treated by the maths.

3.8. THE MAIN THEOREM 35

silent transitions, treating the structural congruence as equality, and reasoning up
to linking.

3.8.2. Forwards. In the forwards direction, we get lucky: � � itself is a labelled
coupled simulation.

PROPOSITION 3.8.2. (� � is a labelled coupled simulation)

If � �� � then

� � ��
 � ��
 � � �
� � ��
 � ��
 � ��
 ��
 � � �
� � � ��
 � � �

PROOF. The first part simply states that � � is reduction-closed, and the last
that it is coupled. It is the second part that is interesting. Suppose � � � � and� ��
 ���

. If � is an input action, the result follows from the last part of theo-
rem 3.5.17 (and fn

	 �
 � fn
	 �
), proposition 3.5.9 and context-closure. We may

therefore suppose it is an output action ��� 	�
�
 , with � �� test. By proposition 3.4.2
� � fn

	 �
 and

� �� fn

	 �
 .
Construct a test harness, a � program

� � � �
let � in � 	�
� � �
 where the � environment

�
� is defined as follows:

� � � � 	�
� � � 	�
�
�
 ��
 � 	�
� � test
	�
�
�
 �

� 	�
� � test
	�
�
�
 ��
 �
� �
� � �

Let
�

be the largest barbed coupled simulation, so � � � , and by context-closure
� � � � � � � (note that �	� � �� � � � � because � � is only a relation on
� program

�
).

Since
� � � ��
 � � � � � �
� �

� � � let � in � 	�
� � test

	�
�
�
 , reduction-closure dictates
that � � � ��
�� � � and � � � � � for some � � . By theorem 3.7.12, � � � ��
 � � � .
By soundness, � � contains ‘test’. By induction on the derivation of � � � ��
 � � � ,
we deduce that � ��
 � �������

� �� � �
 ��
 � � � and � � � � �
� �

� � � let � in � 	�
� � test
	�
�
�
 .

Similarly, since
� � ��
 � � � ��� �
� �

� � � let � in �
� �
� � , we deduce that � � ��

�
� � �

and � � � �
� �

� � � let � in �
� �
��� � � � � � for some � � � and � � .
Note that

� � ��� � let � in
�

and � � � � � � let � in
�
. Now clearly the reaction

relation is invariant under injective renaming of destructors, and also under addi-
tion to or removal from the environment of rewrites that can never be used. We
can easily construct barbed coupled simulations containing these transformations.
Since such transformations (and) are all that distinguish

� �
from

� � � let � in
�

(and similarly for � � �), we conclude that � � � � � ��� as required. �

36 3. MIN

3.8.3. Backwards. � � is not a barbed coupled simulation, because it is a rela-
tion only on � program

�
, and is therefore not context-closed with respect to � program

� �
.

The obvious thing to do is to define labelled similarities on � program
� �

. However,
the resulting relations are not sound. For example, � test

	
 � test
	
 � has no labelled

transitions at all, and is therefore labelled strong bisimilar to
�
. Indeed, if this

approach worked, I would not have bothered to define � program
� �

at all.

The correct thing to do is to close up � � under linking. This does not give the
largest barbed coupled simulation (consider, for example, the barbed bisimula-
tion that relates any two programs that contain ‘test’ permanently), but all that is
required is that it gives some barbed coupled simulation.

PROPOSITION 3.8.3. (� � generates a barbed coupled simulation)

Let
�

be the smallest relation containing � � and and satisfying � ��� � � � � � � � �
whenever � � � � � and � � � � � . Then

�
is context-closed by definition. It is also

sound, reduction-closed and coupled.

PROOF. Show
�

is sound by induction on its derivation. For the base cases,
observe that � � only relates � program

�
s (which do not contain ‘test’), and that

is sound. The inductive case is no less obvious.

To show that
�

is reduction-closed, show that it is a weak simulation, and then ap-
ply theorem 3.7.12. This is easy to do: is a strong bisimulation by theorem 3.7.11,
and � � is a weak simulation by definition, so their union is a weak simulation, and
hence a weak simulation up to linking.

Show that
�

is coupled by induction on its derivation. For the base cases, is
not only coupled but symmetric, and � � is coupled by definition. For the in-
ductive step, suppose � � ��
�� � � � � � and � � ��
�� � � � � � . Then � � �
� � ��
�� � � � � � � � � as required. �

3.8.4. The main theorem.

THEOREM 3.8.4. (Barbed and labelled coupled similarity coincide)

� � � � �
PROOF. Propositions 3.8.2 and 3.8.3. �

Bibliography

[1] Milner, R., A Calculus of Communicating Systems.
[2] Sangiorgi, D. and Walker D., The � -calculus.

37

